
PMXStan: an R package to facilitate Bayesian PKPD modeling with Stan
Yuan Xiong, David A James, Fei He, Wenping Wang

Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA

Introduction

Using a Bayesian approach for making statistical inferences has been

gaining popularity in recent years. Stan (http://mc-stan.org) is a

Bayesian probabilistic programming language that implements an

efficient Hamiltonian Monte Carlo method suitable for fitting larger and

more complex models, and these capabilities are attracting more and

more users, pharmacometricians in particular.

Currently, two hurdles have largely limited a broad application of Stan in

pharmacometrics: 1) a steep learning curve for pharmacometricians to

write PKPD model-specific C++-like Stan code; 2) no efficient solvers to

work seamlessly with Stan’s No-U-Turn Sampler (NUTS) for ordinary

differential equations (ODEs) that are able to handle stiff ODE systems,

often encountered in PKPD modeling.

Here we provide an R package called PMXStan to facilitate practical

Bayesian PKPD modeling and simulation using Stan. Model specification by user
A 2-compartment population PK
model with IV infusion,
parameterized by clearance-
volume, and solved by closed
form solution

Automated modeling process
• Stan code generation
• Data preparation
• Invoke Stan for model

compiling and sampling

Post processing
• Trace plots to check

convergence
• Goodness-of-fit plots for

model diagnostics

Model building, fitting, and diagnostics

process for a population PK model

PMXStan for Bayesian PKPD modeling

PMXStan helps pharmacometricians to focus more on PKPD model

building and frees users from intimidating coding not commonly used in

the pharmacometrics community. More specifically,

1) PMXStan automatically handles low-level technical details using a

set of wrapper functions; and

2) PMXStan provides a NUTS compatible template LSODA solver to

deal with stiff ODE systems.

Some advantages of using PMXStan include, but not limited to:

• With a few model specification statements defined by a user,

PMXStan generates model-specific ready-to-run Stan source

code, which is fully accessible and modifiable by the user.

• PMXStan uses data-conversion functions to translate a

conventional NONMEM dataset into a data list readable by Stan,

and provides convergence checks and model diagnostics.

• While closed-form solutions are provided for PK models when

applicable in PMXStan, for a general PKPD model expressed as a

set of ODEs, the NUTS compatible template LSODA solver can

be conveniently called.

Specification Specification Variable Options

Common for both model types

Model type m.type PK | PKPD

File path for the model m.path User input path

Data type d.type individual | population

Drug administration m.pk.admin 1st_order_abs | IV_bolus | IV_infusion

For PK models only

PK model structure m.pk.struct 1-cmpt | 2-cmpt | 3-cmpt

PK model parameterization m.pk.param CL_V | micro_rate

PK model solver m.pk.solver closed_form | ODE

For PKPD models only

Index of observed state variable m.obs.idx An integer

Parameters to be estimated m.theta Choose from parameter list

Between-subject random effects m.eta Choose from m.theta

Parameters not to be estimated m.const Input values of constant parameters

Initial values of state variables m.obs.init Extract from data

Acknowledgements

Generic PKPD models in ODE form
• User provides a set of ODEs

• A customized solver (“ODE extension”) is

generated for the input ODE system

• System parameters are recognized and

output for the convenience of model

specification by users

> ode <- "

 C2 = centr/V;

 d/dt(depot) =-ka*depot;

 d/dt(centr) = ka*depot - ke*centr;

 d/dt(eff) = (1+Emax*C2/(C2+EC50))*Kin -

Kout*eff;

 "

> instant.stan.extension(ode)

A new ODE extension for Stan has been

created.

System parameters are: V ka ke Emax EC50 Kin

Kout

Main features

• Written in C++ and highly efficient

• Handling complex dosing events of various

routes and schedules

• Capacity to fit multiple endpoints

simultaneously

We would like to thank the Stan team and colleagues Amy Racine, Sebastian Weber,

Etienne Pigeolet, and Michael Looby for their support and discussions.

data{

 int<lower=0> NSUB;

 int<lower=0> NOBS[NSUB];

 int<lower=0> NDOSE[NSUB];

 vector[sum(NOBS)] conc;

 ...

}

parameters{

 vector<lower=-5.0, upper=5.0>[4] theta;

 vector[4] eta[NSUB];

 ...

}

transformed parameters{

 ...

 { ...

 for(i in 1:NSUB){

 ...

 g <- linear_cmpt_iv_infusion(...);

 ...

 }

 }

}

model{

 for(k in 1:4){

 for(i in 1:NSUB)

 eta[i,k] ~ normal(0.,1.);

 theta[k] ~ normal(0.,1000.);

 ...

 }

 ...

 conc ~ normal(y_pred, sigma);

}

> dat

$NSUB

[1] 12

$NOBS

[1] 11 11 11 11 11 11 11 11 11 11 11 11

$obs_time

[1] 0.00 0.25 0.57 1.12 2.02 3.82

[7] 5.10 7.03 9.05 12.12 24.37 0.00

[13] 0.27 0.52 1.00 1.92 3.50 5.02

[19] 7.03 9.00 12.00 24.30 0.00 0.27

...

$conc

[1] 0.74 2.84 6.57 10.50 9.66 8.58

[7] 8.36 7.47 6.89 5.94 3.28 0.00

[13] 1.72 7.91 8.31 8.33 6.85 6.08

[19] 5.40 4.55 3.01 0.90 0.00 4.40

 ...

$NDOSE

[1] 1 1 1 1 1 1 1 1 1 1 1 1

$dose_amt

[1] 4.02 4.40 4.53 4.40 5.86 4.00 4.95 4.53

[9] 3.10 5.50 4.92 5.30

$dose_time

 [1] 0 0 0 0 0 0 0 0 0 0 0 0

$inf_time

 [1] 2 2 2 2 2 2 2 2 2 2 2 2

User-specified

PMXStan-generated

Flow chart of model specification, compilation, execution, diagnostics, and simulations using PMXStan

User-specified

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/

