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Summary. In the absence of relevant prior experience, popular Bayesian estimation techniques
usually begin with some form of ‘uninformative’ prior distribution intended to have minimal infer-
ential influence. The Bayes rule will still produce nice looking estimates and credible intervals,
but these lack the logical force that is attached to experience-based priors and require further
justification. The paper concerns the frequentist assessment of Bayes estimates. A simple for-
mula is shown to give the frequentist standard deviation of a Bayesian point estimate.The same
simulations as required for the point estimate also produce the standard deviation. Exponen-
tial family models make the calculations particularly simple and bring in a connection to the
parametric bootstrap.
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1. Introduction

The past two decades have witnessed a greatly increased use of Bayesian techniques in statistical
applications. Objective Bayes methods, based on neutral or uniformative priors of the type
pioneered by Jeffreys, dominate these applications, carried forward on a wave of popularity
for Markov chain Monte Carlo (MCMC) algorithms. Good references include Ghosh (2011),
Berger (2006) and Kass and Wasserman (1996).

Suppose then that, having observed data x from a known parametric family fμ.x/, I wish
to estimate t.μ/, a parameter of particular interest. In the absence of relevant prior experience,
I assign an uninformative prior π.μ/, perhaps from the Jeffreys school. Applying Bayes rule
yields θ̂, the posterior expectation of t.μ/ given x:

θ̂=E{t.μ/|x}: .1:1/

How accurate is θ̂? The obvious answer, and the one that is almost always employed, is to
infer the accuracy of θ̂ according to the Bayes posterior distribution of t.μ/ given x. This would
obviously be correct if π.μ/ were based on genuine past experience. It is not so obvious for
uninformative priors. I might very well like θ̂ as a point estimate, based on considerations of
convenience, coherence, smoothness, admissibility or aesthetic Bayesian preference, but not
trust what is after all a self-selected choice of prior as determining θ̂’s accuracy. Berger (2006)
made this point at the beginning of his section 4.

As an alternative, this paper proposes computing the frequentist accuracy of θ̂, i.e. regardless
of its Bayesian provenance, we consider θ̂ simply as a function of the data x and compute its
frequentist variability.
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Our main result, which is presented in Section 2, is a general accuracy formula for the delta
method standard deviation of θ̂: general in the sense that it applies to all prior distributions,
uninformative or not. Even in complicated situations the formula is computationally inexpen-
sive: the same MCMC calculations that give the Bayes estimate θ̂ also provide its frequentist
standard deviation. A lasso-type example is used for illustration. Many of the examples that fol-
low use Jeffreys priors; this is only for simplified exposition and is not a limitation of the theory.

In fact several of our examples will demonstrate near equality between Bayesian and fre-
quentist standard deviations. That does not have to be so: remark 1 in Section 6 discusses a
class of reasonable examples where the frequentist accuracy can be less than half of its Bayesian
counterpart. Other examples will calculate frequentist standard deviations for situations where
there is no obvious Bayesian counterpart, e.g. for the upper end point of a 95% credible interval.

The general accuracy formula takes on a particularly simple form when fμ.x/ represents a
p-parameter exponential family: Section 3. Exponential family structure also allows us to sub-
stitute parametric bootstrap sampling for MCMC calculations, at least for uninformative priors.
This has computational advantages. More importantly, it helps to connect Bayesian inference
with the seemingly superfrequentist bootstrap world, which is a central theme of this paper.

The general accuracy formula provides frequentist standard deviations for Bayes estimators,
but nothing more. Better inferences, in the form of second-order-accurate confidence intervals,
are developed in Section 4, again in an exponential family bootstrap context. Section 5 uses the
accuracy formula to compare hierarchical and empirical Bayes methods. The paper concludes
with remarks, details and extensions in Section 6.

The frequentist properties of Bayes estimates is a venerable topic, that has been nicely reviewed
in chapter 4 of Carlin and Louis (2000). Particular attention focuses on large sample behaviour,
where ‘the data swamp the prior’ and θ̂ converges to the maximum likelihood estimator (see result
8 in section 4.7 of Berger (1985)), in which case the Bayes and frequentist standard deviations are
nearly the same. Our accuracy formula provides some information about what happens before
the data swamp the prior, though the present paper offers no proof of its superiority to standard
asymptotic methods.

Some other important Bayesian-cum-frequentist topics are posterior and preposterior model
checking as in Little (2006) or chapter 6 of Gelman et al. (1995), Bayesian consistency (Diaconis
and Freedman, 1986), confidence matching priors, going back to Welch and Peers (1963), and
empirical Bayes analysis as in Morris (1983). Johnstone and Silverman (2004) have provided,
among much else, asymptotic bounds for the frequentist accuracy of empirical Bayes estimates.

Sensitivity analysis—modifying the prior as a check on the stability of posterior inference—is
a staple of Bayesian model selection. The methods of this paper amount to modifying the data as
a posterior stability check (see lemma 1 of Section 2). The implied suggestion here is to consider
both techniques when the prior is in doubt.

The data sets and function freqacc are available from http://statweb.stanford.
edu/∼brad/papers/jrss.

2. General accuracy formula

We wish to estimate the frequentist accuracy of a Bayes posterior expectation θ̂= E{t.μ/|x}
(1.1), where t.μ/ is a parameter of particular interest. Here μ is an unknown parameter vector
existing in parameter space Ω with prior density π.μ/, whereas x is a sufficient statistic taking
its values in, say, p-dimensional space,

x∈Rp, .2:1/

drawn from density fμ.x/ in a known parametric family
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F ={fμ.x/,μ∈Ω}: .2:2/

We write the expectation and covariance of x given μ as

x∼ .mμ, Vμ/ .2:3/

with Vμ a p×p matrix. Denote the gradient of log{fμ.x/} with respect to x by

αx.μ/=∇x log{fμ.x/}=
(

· · · @

@xi
log{fμ.x/} · · ·

)T

: .2:4/

Lemma 1. The gradient of θ̂=E{t.μ/|x} with respect to x is the posterior covariance of t.μ/

with αx.μ/,

∇xθ̂= cov{t.μ/,αx.μ/|x}: .2:5/

Proof. Write θ̂=A.x/=B.x/ where

A.x/=
∫

Ω
t.μ/π.μ/fμ.x/dμ,

B.x/=
∫

Ω
π.μ/fμ.x/dμ:

.2:6/

Denoting the gradient operator ∇x by primes, so αx.μ/= log{fμ.x/}′ (2.4), we calculate

A′.x/=
∫

Ω
t.μ/αx.μ/π.μ/fμ.x/dμ,

B′.x/=
∫

Ω
αx.μ/π.μ/fμ.x/dμ:

.2:7/

Using .A=B/′ = .A=B/.A′=A−B′=B/ gives

θ̂
′ = θ̂

⎧⎪⎪⎨⎪⎪⎩
∫
Ω

t.μ/αx.μ/π.μ/fμ.x/dμ∫
Ω

t.μ/π.μ/fμ.x/dμ
−

∫
Ω
αx.μ/π.μ/fμ.x/dμ∫

Ω
π.μ/fμ.x/dμ

⎫⎪⎪⎬⎪⎪⎭
= θ̂

[
E{t.μ/αx.μ/|x}

E{t.μ/|x} −E{αx.μ/|x}
]

=E{t.μ/αx.μ/|x}−E{t.μ/|x}E{αx.μ/|x}
= cov{t.μ/,αx.μ/|x}: �

A sufficient condition for the interchange of integration and differentiation in expression (2.7)
is that t.μ/π.μ/f ′

μ.x/ be bounded in absolute value by a function g.μ, x̃/ having
∫
Ω g.μ, x̃/dμ

< ∞ for x̃ in an open neighbourhood of x, and similarly for π.μ/f ′
μ.x/. See section 2.4 of

Casella and Berger (2002). Remark 2 of Section 6 presents a more computational derivation of
lemma 1, where the crucial condition is only that the gradient f ′

μ.x̃/ exists continuously in a
neighbourhood of x.

Lemma 1 leads immediately to the general accuracy formula: general in the sense of applying
to all choices of prior, not necessarily uninformative ones.
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Theorem 1. The delta method approximation for the frequentist standard deviation of θ̂=
E{t.μ/|x} is

ŝd= [cov{t.μ/,αx.μ/|x}TVμ̂ cov{t.μ/,αx.μ/|x}]1=2, .2:8/

where μ̂ is the value of μ having mμ̂=x.

Proof. Theorem 1 is an immediate consequence of lemma 1 and the usual delta method estim-
ate of a statistic s.x/, as described for instance in section 4.6 of Rice (2007). Suppose for the
sake of convenient notation that x is unbiased for μ, so mμ=μ in expression (2.3), and μ̂=x in
equation (2.8). Assuming that the gradient s′.x/=∇x.s/ exists continuously in a neighbourhood
of μ, a Taylor series expansion gives

s.x/= s.μ/+ s′.μ/.x−μ/+o.x−μ/: .2:9/

The delta method (or ‘propagation of errors’ as it is known in the physical science literature)
ignores the o.x−μ/ term in equation (2.9) and approximates the standard deviation of s.x/ by

sdμ.s/
:={s′.μ/TVμ s′.μ/}1=2, .2:10/

at the final step, plugging in an unbiased or maximum likelihood estimate (MLE) μ̂ for μ.
Theorem 1 applies approximation (2.10) to s.x/= θ̂=E{t.μ/|x}, using s′.x/=cov{t.μ/,αx.μ/|x}
(2.5). �

The delta method can be used to estimate bias as well as standard deviation, by extending
equation (2.9) to a second-order Taylor series. Instead, the exponential family development of
Section 4 provides second-order-accurate frequentist confidence intervals for θ̂, correcting for
bias as well as other effects.

A useful special case of theorem 1 appears in Meneses et al. (1990). Fraser (1990), section
2, made use of ∇x log{fμ.x/} in likelihood-based procedures for calculating tail probabilities.
The goal of Fraser (1990) is related to ours in the sense that likelihood methods enjoy a flat
prior Bayesian interpretation. Fraser’s work can be thought of as a continuation of the matching
priors theory of Welch and Peers (1963), in which prior distributions are constructed to have
favourable frequentist properties (as opposed to finding the frequentist properties of arbitrary
priors, which is our goal here).

Several points about the general accuracy formula (2.6) are worth emphasizing.

(a) Implementation: suppose that

{μ1,μ2,μ3, : : : ,μB} .2:11/

is a sample of size B from the posterior distribution of μ given x. Each μi gives corres-
ponding values of t.μ/ and αx.μ/ (2.4),

ti = t.μi/,

αi =αx.μi/:
.2:12/

Then t̄ =Σ ti=B approximates the posterior expectation θ̂, whereas

ĉov=
B∑

i=1
.αi − ᾱ/.ti − t̄/=B ᾱ=∑ αi=B .2:13/

estimates the posterior covariance (2.5), so the same simulations that give θ̂ also provide
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its frequentist standard deviation. (This assumes that Vμ̂ is easily available, as it will be in
our applications.)

(b) Posterior sampling: the posterior sample {μ1,μ2, : : : ,μB} will typically be obtained via
MCMC sampling, after a suitable burn-in period. The non-independence of the μs does
not invalidate expression (2.13) but suggests that large values of B may be required for
computational accuracy. The bootstrap-based posterior sampling method of Section 3
produces independent valuesμi. Independence permits simple assessments of the required
size B; see expression (3.12) there.

(c) Exponential families: Section 3 shows that αx.μ/ (2.4) has a simple form, not depending
on x, in exponential families.

(d) Factorization: if

fμ.x/=gμ.x/h.x/ .2:14/

then the gradient

∇x log{fμ.x/}=∇x log{gμ.x/}+∇x log{h.x/}: .2:15/

The last term does not depend on μ, so

cov[t.μ/, ∇x log{fμ.x/}|x]= cov[t.μ/, ∇x log{gμ.x/}|x]

and we can take

αx.μ/=∇x log{gμ.x/} .2:16/

in lemma 1 and theorem 1.
(e) Sufficiency: if x= .y, z/ where x is p dimensional and y=Y.x/ is a q-dimensional sufficient

statistic, we can write fμ.x/=gμ.y/h.z/ and

αx.μ/=∇x log{fμ.x/}=∇x log{gμ.y/}+∇x log{h.z/}: .2:17/

As in equation (2.15), the last term does not depend on μ so we can take αx.μ/ =
∇x log{gμ.y/}. Letting αy.μ/=∇y log{gμ.y/}, a q-dimensional vector,

αx.μ/=Y ′Tαy.μ/, .2:18/

where Y ′ is the q×p matrix .@yi=@xj/. From equation (2.8) we obtain

ŝd= [cov{t.μ/,αy.μ/|y}TY ′Vμ̂Y ′Tcov{t.μ/,αy.μ/|y}]1=2: .2:19/

Note that Y ′Vμ̂Y ′T is the delta method estimate of the covariance matrix of y when
μ equals μ̂. In this approximate sense theorem 1 automatically accounts for sufficiency.
However, we can avoid the approximation if in the first place we work with y and its actual
covariance matrix. (This will be so in the exponential family set-up of Section 3.) More
importantly, working with y makes ĉov in expression (2.13) lower dimensional and yields
better estimation properties when substituted into equation (2.8).

(f) Vector parameter of interest: lemma 1 and theorem 1 apply also to the case where the target
parameter t.μ/ is vector valued, say K dimensional, as is θ̂= E{t.μ/|x}. Then ∇xθ̂ and
cov{t.μ/,αx.μ/|x} in equation (2.5) become p×K matrices, yielding K ×K approximate
frequentist covariance matrix v̂ar for θ̂=E{t.μ/|x},

v̂ar= cov{t.μ/,αx.μ/|x}TVμ̂ cov{t.μ/,αx.μ/|x}, .2:20/

with αx.μ/ and Vμ̂ the same as before.
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(g) Discrete statistic x: suppose that F in expression (2.2) is the one-dimensional Poisson
family fμ.x/=exp.−μ/μx=x!, with x a non-negative integer. We can still calculateαx.μ/=
log.μ/ (2.4) (ignoring the term due to x!, as in equation (2.15)). For μ greater than, say,
10, the Poisson distribution ranges sufficiently widely to smooth over its discrete nature,
and we can expect formula (2.8) to apply reasonably well. Section 5 discusses a multi-
dimensional discrete application.

(h) Standard deviation bias correction: replacing cov{t.μ/,αx.μ/|x} in equation (2.8) with
its nearly unbiased estimate ĉov (2.13) upwardly biases the standard deviation estimate.
Remark 4 of Section 6 discusses a simple bias correction. Bias was negligible in the
numerical examples that follow.

As an example of theorem 1 in action, we shall consider the diabetes data of Efron et al.
(2004): n=442 diabetes patients each have had observed a vector x of p=10 predictor variables
(age, sex, body mass index, blood pressure and six blood serum measurements),

xi = .xi1, xi2, : : : , xi10/ for i=1, 2, : : : , n=442, .2:21/

and also a response variable yi measuring disease progression at 1 year after entry. Standardizing
the predictors and response variables suggests a normal linear model

y =Xα+ e e ∼Nn.0, I/: .2:22/

Here X is the n×p matrix having ith row xi, whereas y is the vector of n responses.
Park and Casella (2008) considered applying a Bayesian version of the lasso (Tibshirani, 1996)

to the diabetes data. In terms of our model (2.22) (they did not standardize the response) Park
and Casella took the prior distribution for α to be

π.α/= exp{−λL1.α/}, .2:23/

with L1.α/ the L1-norm Σ10
1 |αj|, and λ having value (in our standardized set-up)

λ=0:37: .2:24/

The Laplace-type prior (2.23) results in the posterior mode of α given y coinciding with the
lasso estimate

α̂λ=arg min
α

{‖y −Xα‖2=2+λL1.α/}, .2:25/

as pointed out in Tibshirani (1996). The choice λ=0:37 was obtained from marginal maximum
likelihood considerations. In this sense Park and Casella’s analysis is empirical Bayesian, but
we shall ignore that here and assume prior (2.23)–(2.24) is preselected. (The lasso itself plays no
role in their calculations or those here except as motivation.)

An MCMC algorithm was used to produce (after burn-in) B = 10000 samples αi from the
posterior distribution π.α|y/, under assumptions (2.22)–(2.24):

{αi, i=1, 2, : : : , B=10000}: .2:26/

From these we can approximate the Bayes posterior expectation θ̂=E.γ|y/ for any parameter
of interest γ= t.α/,

θ̂=
B∑

i=1
t.αi/=B: .2:27/
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Note that it is helpful here and in what follows to denote the parameter of interest as γ= t.μ/

with θ̂=E.γ|x/ indicating its posterior expectation.
We can now apply theorem 1 to estimate the frequentist standard deviation of θ̂. In terms of

the general notation (2.2), μ becomes α, and we can take x to be the sufficient statistic β̂=XTy
in model (2.22). (We could take x = α̂= .XTX/−1XTy, but these choices make α the natural
parameter vector and β̂ the sufficient statistic in the exponential family form (3.1).) Section 3
shows that αx.μ/ (2.4) equals α in an exponential family. With ĉov computed as in expression
(2.13), the computational form of theorem 1 yields frequentist standard deviation

ŝd= .ĉovT
G ĉov/1=2 .G=XTX/, .2:28/

since G is the variance matrix V of β̂.
As a univariate ‘parameter of special interest’, consider estimating

γ125 =x125α, .2:29/

the diabetes progression for patient 125. (Patient 125 fell near the centre of the y response scale.)
The 10000 values γ̂125,i =x125αi were nearly normally distributed:

N .0:248, 0:0722/: .2:30/

Formula (2.28) gave frequentist standard deviation 0.071 for the posterior expectation of γ125,
θ̂125 = 0:248 = Σ γ̂125,i=10000, which is almost the same as the posterior standard deviation,
but having quite a different interpretation. The near equality here is no fluke but can turn out
differently for other linear combinations γ=xα; see remark 1 of Section 6.

Suppose we are interested in the posterior cumulative distribution function (CDF) of γ125.
For a given value c define

tc.α/=
{

1 if x125α� c,
0 if x125α>c

.2:31/

so E{tc.α/|y}=Pr.γ125 � c|y/. The MCMC sample (2.26) provides B=10000 posterior values
tci, from which we obtain the estimated CDF(c) value ΣB

1 tci=B and its standard deviation (2.8);
for example c=0:3 gives

Pr.γ125 �0:3|y/=0:762±0:304, .2:32/

0.304 being the frequentist standard deviation of the posterior Bayes CDF 0.762.
The bold curve in Fig. 1 traces the posterior CDF of γ125. The broken vertical bars indicate

±1 frequentist standard deviation. If we take prior (2.23) literally then the CDF curve is exact
but, if not, the large frequentist standard errors suggest cautious interpretation; in the same way
we might react to a disturbing sensitivity analysis on the choice of prior.

The CDF curve equals 0.90 at ĉ = 0:342, this being the upper end point of a one-sided
Bayes 90% credible interval. The frequentist standard deviation of ĉ is 0.069 (obtained from
ŝd{CDF.ĉ/} divided by the posterior density at ĉ, the usual delta method approximation),
giving coefficient of variation 0:069=0:342=0:20.

For θ125 itself we could compare the frequentist standard deviation 0:071 with its Bayes
posterior counterpart 0.072 (2.30). No such comparison is possible for the posterior CDF
estimates: the CDF curve in Fig. 1 is exact under prior (2.23)–(2.24). We might add a hierarchical
layer of Bayesian assumptions in front of prior (2.23)–(2.24) in order to assess the curve’s
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Fig. 1. Posterior CDF of γ125 (2.29) ( ) for the diabetes data ( , ˙1 frequentist standard error): the
estimated curve is quite uncertain from a frequentist viewpoint; the upper 0.90 value ĉD0.342 has frequentist
standard error 0.069, as indicated by the horizontal bar

variability, but it is not obvious how to do so here. (Park and Casella (2008), section 3.2, made
one suggestion.)

The frequentist error bars of Fig. 1 extend below 0 and above 1, a reminder that standard
deviations are a relatively crude inferential tool. Section 4 discusses more sophisticated frequen-
tist methods.

3. A bootstrap version of the general formula

A possible disadvantage of Section 2’s methodology is the requirement of a posterior sample
{μ1,μ2, : : : ,μB} from π.μ|x/ (2.11). This section discusses a parametric bootstrap approach to
the general accuracy formula that eliminates posterior sampling, at the price of less generality:
a reduction of scope to exponential families and to priors π.μ/ that are at least roughly uninfor-
mative. On the other hand, the bootstrap methodology makes the computational error analysis,
i.e. the choice of the number of replications B, straightforward and, more importantly, helps to
connect Bayesian and frequentist points of view.

A p-parameter exponential family F can be written as

F :{fα.β̂/= exp{αTβ̂−ψ.α/}f0.β̂/,α∈A}: .3:1/

Here α is the natural or canonical parameter vector, and β̂ is the p-dimensional sufficient
statistic. The expectation parameter β=Eα.β̂/ is a one-to-one function of α, say β=A.α/, with
β̂ equalling the MLE of β. The parameter space A for α is a subset of Rp, p-dimensional space,
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as is the corresponding space for β. The function ψ.α/ provides the multiplier necessary for
fα.β̂/ to integrate to 1.

In terms of the generic notation (2.1)–(2.2), α is μ and β̂ is x. The expectation and covariance
of β̂ given α,

β̂∼ .β, Vα/, .3:2/

can be obtained by differentiating ψ.α/.
The general accuracy formula (2.8) takes a simplified form in exponential families.

Theorem 2. The delta method approximation for the frequentist standard deviation of θ̂=
E{t.α/|β̂} in exponential family (3.1) is

ŝd= [cov{t.α/,α|β̂}TVα̂ cov{t.α/,α|β̂}]1=2, .3:3/

where α̂, the natural parameter vector corresponding to β̂, is the MLE of α.

Proof. The gradient ∇x log{fμ.x/} in expression (2.4) is now

∇β̂ log{fα.β̂/}=∇β̂ [αTβ̂−ψ.α/+ log{f0.β̂/}]

=α+∇β̂ log{f0.β̂/}: .3:4/

The final term does not depend onα so, as in equation (2.15), what was calledαx.μ/ in expression
(2.4) becomes simply α, reducing equation (2.8) to equation (3.3). �

Parametric bootstrap resampling can be employed to calculate both θ̂ and ŝd, as suggested
in Efron (2012). We independently resample B times from the member of F having parameter
vector α equal to α̂:

fα̂.·/→{β1,β2, : : : ,βi, : : : ,βB} .3:5/

(βi being short for the conventional bootstrap notation β̂
Å
i ). Each βi gives a corresponding

natural parameter vector αi =A−1.βi/. Let πi =π.αi/, and define the ‘conversion factor’

Ri =fαi .β̂/=fα̂.βi/, .3:6/

the ratio of the likelihood to the bootstrap density. (See equations (3.13)–(3.15) for the evaluation
of Ri.)

The discrete distribution that puts weight

pi =πiRi

/ B∑
j=1

πjRj .3:7/

on αi, for i=1, 2, : : : , B, approximates the conditional distribution of α given β̂. To see this let
ti = t.αi/ and θ̂B =ΣB

1 tipi, so

θ̂B =

B∑
i=1

tiπi fαi .β̂/
/

fα̂.βi/

B∑
i=1

πi fαi .β̂/
/

fα̂.βi/

: .3:8/

Since the βi are drawn from bootstrap density fα̂.·/, equation (3.8) represents an importance
sampling estimate of
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A

t.α/π.α/fα.β̂/ dα
/∫

A
π.α/fα.β̂/, .3:9/

which equals E{t.α/|β̂}.
The same argument applies to any posterior calculation. In particular, cov{t.α/,α|β̂} in

expression (3.3) is approximated by

ĉov=
B∑

i=1
pi.αi − ᾱ/.ti − θ̂/ ᾱ=∑ piαi, θ̂=∑ piti: .3:10/

Implementing theorem 2 now follows three algorithmic steps.

Step 1: generate a parametric bootstrap sample β1,β2, : : : ,βB (3.5).
Step 2: for each βi calculate αi, ti = t.αi/ and pi (3.7).
Step 3: compute ĉov (3.10).

Then θ̂B =Σpiti approximates θ̂=E{t.α/|β̂} and has delta method frequentist standard devi-
ation

ŝd= .ĉovT
Vα̂ ĉov/1=2: .3:11/

(The matrix Vα̂ can be replaced by the empirical covariance matrix of β1,β2, : : : ,βB or, with
one further approximation, by the inverse of the covariance matrix of α1,α2, : : : ,αB.) Remark
3 of Section 6 develops an alternative expression for ŝd. In what follows, θ̂B is called simply θ̂.

An MCMC implementation sample {μi, i = 1, 2, : : : , B} (2.11) approximates a multi-
dimensional posterior distribution by an equally weighted distribution on B non-independent
points. The bootstrap implementation (3.5)–(3.7) puts unequal weights on B independent and
identically distributed (IID) points.

Independent resampling permits a simple analysis of ‘internal accuracy’, the error due to
stopping at B resamples rather than letting B→∞. Define Pi = πiRi and Qi = tiPi = tiπiRi.
Since the pairs .Pi, Qi/ are independently resampled, standard delta method calculations show
that θ̂=ΣQi=ΣPi has internal squared coefficient of variation approximately

ĉv2
int =

1
B

B∑
i=1

(
Qi

Q̄
− Pi

P̄

)2
/

B, .3:12/

Q̄=ΣQi=B and P̄ =ΣPi=B. See remark 3 of Appendix A.
There are two sources of approximation in applying the general accuracy formula: Monte

Carlo error due to stopping at B replications, and delta method error in estimating the true
standard deviation. For bootstrap sampling, formula (3.12) assesses the Monte Carlo error. The
better bootstrap confidence intervals of Section 4 improve on the inferential approximations of
the delta method.

The conversion factor Ri (3.6) can be defined for any family {fα.β̂/}, but it has a simple
expression in exponential families:

Ri = ξ.αi/ exp{Δ.αi/}, .3:13/

where Δ.α/ is the ‘half-deviance difference’

Δ.α/= .α− α̂/T.β+ β̂/−2{ψ.α/−ψ.α̂/}, .3:14/

and, to a good approximation (Efron (2012), lemma 1),
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Table 1. Cell infusion data†

Infusion Results for the following numbers of days:
proportion

1 2 3 4 5

1 5/31 3/28 20/45 24/47 29/35
2 15/77 36/78 43/71 56/71 66/74
3 48/126 68/116 145/171 98/119 114/129
4 29/92 35/52 57/85 38/50 72/77
5 11/53 20/52 20/48 40/55 52/61

†Human cell colonies were infused with mouse nuclei in five different
proportions, over time periods varying from 1 to 5 days, and observed
to see whether they did or did not thrive. The table displays the num-
ber thriving over the number of colonies. For example, five of the 31
colonies in the lowest infusion–days category thrived.

ξ.α/=1
/
πJeff .α/, .3:15/

with πJeff .α/=|Vα|1=2, Jeffreys invariant prior for α. If our prior π.α/ is πJeff .α/ then

πiRi = exp{Δ.αi/}: .3:16/

The bootstrap distribution fα̂.·/ locates its resamplesαi near the MLE α̂. A working definition
of an informative priorπ.α/ might be a prior that places substantial probability far from α̂. In that
case, Ri is liable to take on enormous values, destabilizing the importance sampling calculations.
Park and Casella’s (2008) prior (2.23)–(2.24) for the diabetes data would be a poor choice for
bootstrap implementation (though this difficulty can be mitigated by recentring the parametric
bootstrap resampling distribution).

Table 1 displays the cell infusion data, which we shall use to illustrate bootstrap implementation
of the general accuracy formula. Human muscle cell colonies were infused with mouse nuclei.
Five increasing infusion proportions of mouse nuclei were tried, cultured over time periods
ranging from 1 to 5 days, and observed to find whether they thrived or not. Table 1 shows that
52 of the 61 colonies in the highest proportion–days category thrived, etc.

Letting .sjk, njk/ be the number of successes and number of colonies in the jkth cell, we assume
independent binomial variation:

sjk
ind∼ Bi.njk, ξjk/ j =1, 2, : : : , 5, k =1, 2, : : : , 5: .3:17/

An additive logistic regression model fitted the data reasonably well:

logit.ξjk/=α0 +α1Ij +α2I2
j +α3Dk +α4D2

k , .3:18/

with Ij the infusion proportions 1, 2, : : : , 5, and Dk the days 1, 2, : : : , 5. Model (3.18) is a five-
parameter exponential family (3.1).

For our parameter of special interest t.α/ we shall take

γ=
5∑

j=1
ξj5

/
5∑

j=1
ξj1, .3:19/

which is the ratio of overall probability of success on day 5 compared with day 1, and calculate its
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Fig. 2. Posterior density of ratio γ (3.19) given the cell infusion data, for the binomial model (3.17)–(3.18) and
Jeffreys prior πJeff.α/ (- - - - -, posterior density of γ by using the conjugate prior density (3.23) with c0 D0.2 and
b0 equal to the MLE β̂; *, raw unweighted bootstrap density): from BD2000 parametric bootstrap replications
(3.20), posterior expectation 3.34 has frequentist ̂sd D 0.273; the line segment shows central 0.90 credible
interval [2.92, 3.80]; the frequentist standard deviation of 0.90 content is 0.042

posterior distribution assuming Jeffreys priorπJeff .α/ onα. Warning: Jeffreys prior is convenient
for illustrative purposes here but can be dangerous to use in multi-dimensional situations. An
alternative analysis based on conjugate priors appears below.

B=2000 parametric bootstrap samples were generated according to

sÅjk

ind∼ Bi.njk, ξ̂jk/, j =1, 2, : : : , 5, k =1, 2, : : : , 5, .3:20/

where ξ̂jk is the MLE of ξjk obtained from model (3.18). These gave bootstrap MLEsα1,α2, : : : ,
αi,: : : ,α2000 and corresponding bootstrap estimates γi = t.αi/ as in equation (3.19). The weights
pi (3.7) that convert the bootstrap sample into a posterior distribution are

pi = exp.Δi/

/
2000∑
j=1

exp.Δj/ .3:21/

according to equation (3.16), with Δi the half-binomial deviance difference (3.14); see remark
5 in Section 6.

The bold curve in Fig. 2 is the estimated posterior density, i.e. a smoothed version of the
discrete distribution putting weight pi on γi = t.αi/. Its expectation

θ̂B =
B∑
1

pi t .αi/=3:34 .3:22/
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Table 2. Posterior expectation and standard deviation of γ .3.19/ for a Jeffreys prior and
six choices of c0 for conjugate prior .3.23/, b0 D β̂†

Jeffreys Conjugate prior for the following values of c0: Bootstrap
prior

0.005 0.01 0.025 0.05 0.1 0.2

Expectation 3.335 3.348 3.348 3.349 3.349 3.349 3.350 3.361
Standard

deviation
0.272 0.274 0.273 0.271 0.268 0.263 0.252 0.270

†At the right are the expectation and standard deviation for the unweighted bootstrap distri-
bution.

is a Monte Carlo estimate of the posterior expectation of γ given the data. (B=2000 resamples
were excessive, formula (3.12) giving internal coefficient of variation only 0.002.)

How accurate is θ̂? Formula (3.11) yields ŝd=0:273 as its frequentist standard deviation. This
is almost the same as the Bayes posterior standard deviation {Σpi.γi − θ̂/2}1=2 =0:272.

In this case we can see why the Bayesian and frequentist standard deviations might be so
similar: the Bayes posterior density is nearly the same as the raw bootstrap density (weight
1=B on each value γi). This happens whenever the parameter of interest has low correlation
with the weights pi (lemma 3 of Efron (2014)). The bootstrap estimate of standard deviation
{Σ.γi − γ̄/2}1=2 equals 0.270, and it is not surprising that both the Bayes posterior standard
deviation and the frequentist delta method standard deviation are close to 0.270.

Integrating the author’s full curve in Fig. 2 gives [2:92, 3:80] as the 0.90 central credible
interval for γ. Defining ti to be 1 or 0 as γi does or does not fall into this interval, formula (3.11)
yields ŝd = 0:042 for the frequentist standard deviation of the interval’s content. The two end
points have standard deviations 0.22 and 0.31. More interestingly, their frequentist correlation
(calculated by using equation (2.20); see remark 6 of Section 6) is 0.999. This strongly suggests
that replications of the muscle data experiment would show the 0.90 credible interval shifting
left or right, without much change in length.

As an alternative to πJeff .α/ we also considered conjugate priors for the exponential family
(3.17)–(3.18). In terms of expression (3.1), conjugate priors have the form

πc0,b0.α/= exp[c0{αTb0 −ψ.α/}] .3:23/

(Diaconis and Ylvisaker, 1979). The p × p second-derivative matrix of − log{πc0,b0.α/} is
c0 ψ̈.α/, with ψ̈.α/ = .@2ψ=@αi @αj/, compared with ψ̈.α/ for − log{fα.β̂/}, so small values
of c0 make πc0,b0.α/ more diffuse than the distribution of the MLE α̂. Spiegelhalter and Smith
(1982), writing in a model selection context, recommended setting b0 equal to β̂, the MLE of
β=Eα.β̂/, with c0 perhaps 1=n for an IID sample of size n. For the non-IID data of Table 1,
rough information calculations suggest c0 of the order of 0.01.

Posterior expectations and standard deviations (not frequentist standard deviations from the
general accuracy formula) are given in Table 2, for six choices of c0 ranging from 0.005 to 0.2.
These do not differ much from each other or from the Jeffreys moments, and all are close to the
unweighted bootstrap values.

(R function freqacc calculates frequentist standard deviations for Bayes estimates that are
obtained either by MCMC sampling as in Section 2 or by bootstrap reweighting as here; the
function assumes exponential family form (3.1).)
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4. Improved inferences

The general accuracy formula of theorem 1 and theorem 2 computes frequentist standard de-
viations for Bayesian estimates. Standard deviations are a good start but not the last word in
assessing the accuracy of a point estimator. A drawback is apparent in Fig. 1, where the standard
error bars protrude beyond the feasible interval [0, 1].

This section concerns bootstrap methods that provide better frequentist inference for Bayesian
estimates. A straightforward bootstrap approach would begin by obtaining a preliminary set of
resamples, say

fα̂.·/→ b̂
Å
1 , b̂

Å
2 , : : : , b̂

Å
K .4:1/

in the exponential family set-up (3.1), for each b̂
Å
k calculating θ̂

Å
k = Ê{t.α/|b̂Å

k }, the posterior
expectation of t.α/ given sufficient statistic b̂

Å
k , and finally using {θ̂Å1 , θ̂

Å
2 , : : : , θ̂

Å
K} to form a

bootstrap confidence interval corresponding to the point estimate θ̂= E{t.α/|β̂}, perhaps the
BCa interval (Efron, 1987). By construction, such intervals would not protrude beyond [0, 1] in
the equivalent of Fig. 1 and would take into account bias and interval asymmetry as well as
standard deviation.

The roadblock to the straightforward approach is excessive computation. Bootstrap confi-
dence intervals require K, the number of replicates, to be of the order of 1000. Each of these
would require further simulations, {μ1,μ2, : : : ,μB} as in expression (2.11) or {β1,β2, : : : ,βB}
as in expression (3.5), B also exceeding 1000, to calculate the θ̂

Å
k accurately. (The change in no-

tation from expression (3.5) to expression (4.1) is intended to emphasize that each b̂
Å
k needs to

be followed, at least in the straightforward approach, by its own second-level bootstrap sample
(3.5).)

A short-cut method for bootstrap confidence calculations that, like theorems 1 and 2, requires
no additional replications will be developed next. The short cut requires exponential family
structure (3.1) but otherwise applies equally to MCMC or bootstrap implementation (2.11) or
(3.5).

The Bayes theorem says that the posterior density g.α|β̂/ corresponding to exponential family
density fα.β̂/ (3.1) is

g.α|β̂/=π.α/fα.β̂/=f.β̂/ f.β̂/=
∫

A
π.α/fα.β̂/dα: .4:2/

Suppose that now we change the observed sufficient statistic vector β̂ to a different value b.

Lemma 2. The posterior distributions corresponding to exponential family F form an expo-
nential family G,

G ={g.α|b/= exp{.b− β̂/Tα−φ.b/}g.α|β̂/ for b− β̂ ∈ B̂}, .4:3/

where

exp{φ.b/}=
∫

A
exp{.b− β̂/Tα}g.α|β̂/dα: .4:4/

G is a p-parameter exponential family with roles reversed from F ; now α is the sufficient
statistic and b the natural parameter vector; B̂ is the convex set of vectors b− β̂ for which the
integral in equation (4.4) is finite.

(G is not the familiar conjugate family (Diaconis and Ylvisaker, 1979), though there are
connections.)
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Proof. From expression (3.1) we compute

g.α|b/=π.α/fα.b/=f.b/

= π.α/fα.β̂/

f.β̂/

fα.b/

fα.β̂/

f.β̂/

f.b/
:

.4:5/

But
fα.b/

fα.β̂/
= exp{.b− β̂/Tα} f0.b/

f0.β̂/
, .4:6/

yielding

g.α|b/=g.α|β̂/ exp{.b− β̂/Tα}f0.b/f.β̂/

f0.β̂/f.b/
: .4:7/

The final factor does not depend on α and so must equal exp{−φ.b/} in expression (4.3)–(4.4)
for equation (4.7) to integrate to 1. �

In Sections 2 and 3, g.α|β̂/ was approximated by a discrete distribution putting weight pi on
αi, say

ĝ.αi|β̂/=pi for i=1, 2, : : : , B, .4:8/

pi =πiRi=ΣB
1 πjRj in bootstrap implementation (3.5)–(3.9), and pi =1=B in the MCMC imple-

mentation (2.11) where the μi play the role of the αi.
Substituting ĝ.α|β̂/ for g.α|β̂/ in expression (4.3) produces the empirical posterior family Ĝ.

Define

Wi.b/= exp{.b− β̂/Tαi}: .4:9/

Then Ĝ can be expressed as

Ĝ :
{
ĝ.αi|b/=Wi.b/pi

/
B∑

j=1
Wj.b/pj for i=1, 2, : : : , B

}
, .4:10/

b∈Rp, i.e. the discrete distribution putting weight proportional to Wi.b/pi on αi. (Note that Ĝ
differs from the empirical exponential family in section 6 of Efron (2012).)

We can now execute the ‘straightforward bootstrap approach’ (4.1) without much additional
computation. The kth bootstrap replication θ̂

Å
k = Ê{t.α/|b̂Å

k } is estimated from ĝ.αi|b̂Å
k /, using

the importance sampling formula, as

θ̂
Å
k =

B∑
i=1

ti Wi.b̂
Å
k /pi

/
B∑

i=1
Wi.b̂

Å
k /pi ti = t.αi/: .4:11/

Aside from step (4.1), usually comparatively inexpensive to carry out, we can obtain θ̂
Å
1 , θ̂

Å
2 , : : : ,

θ̂
Å
K from just the original calculations for θ̂=Σ tipi and use the θ̂

Å
k -values to construct a bootstrap

confidence interval. (In particular, there is no need for new MCMC simulations for each new
b̂
Å
k .)
Section 6 of Efron (2012) carries out this program under the rubric ‘bootstrap after bootstrap’.

It involves, however, some numerical peril: the weighting factors Wi.b̂
Å
k / can easily blow up,

destabilizing the estimates θ̂
Å
k . The peril can be avoided by local resampling, i.e. by considering

alternate data values b very close to the actual β̂, rather than full bootstrap resamples as in
expression (4.1).
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Fig. 3. Vertical bars are 68% central ABC limits for patient 125’s posterior CDF in Fig. 1: they remain within
the feasible interval [0, 1], unlike Fig. 1’s standard deviation bars ( )

This suggests the ‘approximate bootstrap confidence (ABC)’ (DiCiccio and Efron, 1992)
system of confidence intervals (not to be confused with ‘approximate Bayesian computation’, as
in Fearnhead and Prangle (2012)). The ABC algorithm approximates full bootstrap confidence
intervals by using only a small number of resamples b in the immediate neighbourhood of the
observed sufficient statistic β̂.

Fig. 3 shows again the posterior CDF from Fig. 1 for γ125, the progression parameter for
patient 125 in the diabetes study. The bold vertical bars indicate ABC 68% central frequentist
confidence limits for the Bayes posterior CDF values. Now the confidence limits stay within
[0, 1]. (95% limits are much wider, nearly filling the interval [0, 1] for some values of c, indicating
that perhaps we are asking too much of the diabetes data set.) Remark 7 of Section 6 discusses
the details of the ABC calculations.

Standard confidence intervals, say θ̂± ŝd for approximate 68% coverage, require only the
original point estimate θ̂ and its accuracy estimate ŝd, which in our case is what the general
accuracy formula efficiently provides. The standard intervals are ‘first order accurate’, with
their actual coverage probabilities converging to the nominal value at rate n−1=2 as the sample
size n grows large.

The ABC algorithm provides second-order accuracy, i.e. coverage errors approaching 0 at rate
n−1. This is more than a theoretical nicety. As the examples in DiCiccio and Efron (1992) showed,
the ABC intervals often come close to exact small sample intervals when the latter exist. Three
corrections are made to the standard intervals: for bias, for acceleration (i.e. changes in standard
deviation between the interval end points) and for non-normality. The algorithm depends on
exponential family structure, provided by Ĝ the empirical posterior family (4.10), and a smoothly
varying point estimate.
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Fig. 4. Relative differences (4.14) for the 442 diabetes patients, Park and Casella prior (2.23): Bayes
estimate minus the MLE, divided by the MLE standard deviation

In our situation the point estimate is the empirical posterior expectation (4.11) of t.α/ given
sufficient statistic b, say θ̂= s.b/,

θ̂= s.b/=
B∑

i=1
ti Wi.b/pi

/
B∑

i=1
Wi.b/pi: .4:12/

For b near β̂, the values that are explored in the ABC algorithm, the smoothness of the kernel
Wi.b/ (4.9) makes s.b/ smoothly differentiable.

What parameter is the intended target of the ABC intervals? The answer, from DiCiccio and
Efron (1992), is θ= s.β/, the value of s.b/ if sufficient statistic b equals its expectation β. It is
not γ= t.α/, the true value of the parameter of special interest.

ABC’s output includes bias, an assessment of the bias of θ̂= s.β̂/ as an estimator of θ, not as
an estimate of γ. The more interesting quantity definitional bias,

θ−γ=E{t .α̂/ |β̂=β}− t.α/, .4:13/

depends on the prior π.α/. It seems reasonable to ask that an uninformative prior should not
produce large definitional biases. The parameter γ125 (2.29) has MLE 0:316±0:076, compared
with Bayes estimate and frequentist standard deviation 0:248±0:071, giving a relative difference
of

δ̂= θ̂− γ̂

sd.γ̂/
= 0:248−0:316

0:076
=−0:90: .4:14/
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In other words, the Park and Casella (2008) prior (2.23) shifts the estimate for patient 125 about
0.9 standard deviations downwards, quite a substantial effect.

Fig. 4 shows the relative difference estimates for all 442 diabetes patients. Most of the δ̂s are
less extreme than that for patient 125. Even though prior (2.23) looks like a strong shrinker,
and not at all uninformative, its effects on the patient estimates are mostly moderate.

5. Hierarchical and empirical Bayes accuracy

Modern scientific technology excels at the simultaneous execution of thousands, and more,
parallel investigations, the iconic example being microarray studies of genetic activity. Both
hierarchical and empirical Bayes methods provide natural statistical tools for analysing large
parallel data sets. This section compares the accuracy of the two methods, providing some
intuition about why, often, there is not much difference.

A typical hierarchical model begins with a hyperprior π.α/ providing a hyperparameter α,
which determines a prior density gα.δ/; N realizations are generated from gα.·/, say

δ = .δ1, δ2, : : : , δk, : : : , δN/; .5:1/

finally, each parameter δk provides an observation zk according to density hδk
.zk/, yielding a

vector z of N observations,

z = .z1, z2, : : : , zk, : : : , zN/: .5:2/

The functional forms π.·/, gα.·/ and hδ.·/ are known, but not the values of α and δ. Here we
shall assume that the pairs .δk, zk/ are generated independently for k = 1, 2, : : : , N. We wish to
estimate the parameter δ from the observations z.

If α were known then Bayes theorem would directly provide the conditional distribution of
δk given zk:

gα.δk|zk/=gα.δk/hδk
.zk/=fα.zk/, .5:3/

where fα.zk/ is the marginal density of zk given α,

fα.zk/=
∫
gα.δ/hδ.zk/dδ: .5:4/

The empirical Bayes approach estimates the unknown value of α from the observed vector z,
often by marginal maximum likelihood:

α̂=arg max
α

{
N∏

i=1
fα.zk/

}
, .5:5/

and then infers the individual δks according to gα̂.δk|zk/. Hierarchical Bayes inference aims
instead for the full posterior distribution of δk given all the observations z:

g.δk|z/=
∫
gα.δk|zk/π.α|z/dα: .5:6/

We shall employ the general accuracy formula to compare the frequentist variability of the two
approaches. In the example that follows, all of the calculations can be carried out in terms of
the marginal densities fα.·/, rendering it unnecessary to specify the prior densities gα.·/.

As a working example we consider the prostate cancer microarray data (Singh et al., 2002).
Each of 102 men, 52 prostate cancer patients and 50 controls, has had the activity of N =6033
genes measured, as discussed in Section 5 of Efron (2012). A test statistic zk comparing cancer
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Fig. 5. Prostate cancer data (�, log-counts for 49 bins (5.8)–(5.9)): the quadratic curve ( ) would fit
the log-counts if all the genes were null, δk D 0 in distribution (5.7); the eighth-degree polynomial ( )
gives a much better fit, indicating that some genes have large effect sizes

patients with controls has been calculated for each gene, which we shall assume here follows a
normal translation model

zk ∼N .δk, 1/, .5:7/

where δk is gene k’s effect size (so hδ.z/ in equations (5.3) and (5.4) is the normal kernel
φ.z − δ/ = exp{−.z − δ/2=2}=

√
.2π/). ‘Null’ genes have δk = 0 and zk ∼N .0, 1/, but of course

the investigators were looking for non-null genes: those having large δk-values, either positive
or negative.

Binning the data simplifies the Bayes and empirical Bayes analyses. For Fig. 5 the data have
been put into J =49 bins Zj, each of width 0.2, with centres cj,

cj =−4:4, −4:2, : : : , 5:2: .5:8/

Let yj be the count in bin Zj:
yj =#{zk ∈Zj}: .5:9/

The dots in Fig. 5 are the log-counts log.yj/. The broken quadratic curve would give a good fit
to the dots if all the genes were null, but it is obviously deficient in the tails, suggesting some
large effect sizes.

An eighth-degree polynomial (the full curve) provided a good fit to the data. It was obtained
from a Poisson regression generalized linear model. The counts yj (5.9) were assumed to be
independent Poisson variates,

yj
ind∼ Poi.μj/, j =1, 2, : : : , J =49, .5:10/
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with

μj =Eα.yj/= exp{x.cj/α}: .5:11/

Here x.cj/ is the nine-dimensional row vector

x.cj/= .1, cj, c2
j , : : : , c8

j /, .5:12/

the cj being the bin centres (5.8), and α is an unknown parameter vector, α∈R9. There is a
small loss of information in going from the full data vector z to the binned counts that we shall
ignore here.

Model (5.10)–(5.12) is a nine-parameter exponential family fα.β̂/ (3.1) with α the natural
parameter vector. Its sufficient statistic is

β̂=XTy, .5:13/

where X is the 49 × 9 matrix having jth row x.cj/, and y is the 49-vector of counts; β̂ has
covariance matrix

Vα=XT diag.μα/X, .5:14/

diag.μα/ the diagonal matrix with diagonal elements (5.11).
We are now ready to apply the accuracy formula in the exponential family form of theorem

2, expression (3.3). A notable feature of this example is that the parameter of interest t.α/ is
itself a posterior expectation: let τ .δ/ be an ‘interesting function’ of an individual parameter δ
in equation (5.1), for instance the indicator of whether or not δ=0:

τ .δ/= I0.δ/: .5:15/

Letting .δ0, z0/ represent a hypothetical (parameter, observation) pair, we define t.α/ to be the
conditional expectation of τ .δ0/ given z0,α and the sufficient statistic β̂,

t.α/=E{τ .δ0/|z0,α, β̂}: .5:16/

In the prostate cancer study, for example, with τ .δ/= I0.δ/ and z0 =3, t.α/ is the conditional
probability of a gene being null given a z-value of 3. However, α is unobserved and t.α/ must
be inferred. The hierarchical Bayes estimate is

θ̂=E{t.α/|β̂}=E{τ .δ0/|z0, β̂}, .5:17/

compared with the empirical Bayes MLE estimate t.α̂/. (Note that we now require three levels
of parameter definition: in addition to θ̂ being the posterior expectation of t.α/ (5.17), t.α/ itself
is the posterior expectation of τ .δ0/ (5.16).)

The hyperprior π.α/ is usually taken to be uninformative in hierarchical Bayes applications,
making them good candidates for the bootstrap implementation of Section 3. Let α̂ be the MLE
of hyperparameter α, which is obtained in the prostate cancer study by Poisson regression from
model (5.10)–(5.12), glm(y∼X, poisson)$coef in language R. From α̂we obtain parametric
bootstrap samples yÅ

i , i=1, 2, : : : , B:

yÅ
ij

ind∼ Poi.μ̂j/, j =1, 2, : : : , J , .5:18/

where μ̂j = exp{x.cj/α̂}. The yÅ
i -vector yields βi and αi, expressions (3.5) and (3.6): βi =XTyÅ

and αi = glm(yÅ ∼X, poisson)$coef.
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Fig. 6. Hierarchical Bayes estimate θ̂DE.δ0jz0, β̂/ as a function of z0 for the prostate cancer study data, cal-
culated from B D4000 parametric bootstrap samples (5.18) ( , ˙1 frequentist standard deviation ̂sd (3.11))

If for convenience we take π.α/ to be Jeffreys prior, then the weights πiRi in expression (3.7)
become

πiRi = exp{Δ.αi/} .5:19/

where, for Poisson regression, the half-deviance difference Δ.αi/ is

Δi = .αi − α̂/T.βi + β̂/−2
J∑

j=1
.μij − μ̂j/, .5:20/

μ̂j =exp{x.cj/α̂} and μij =exp{x.cj/αi} (Efron (2012), section 5). Letting ti be the conditional
expectation (5.16),

t.αi/=E{τ .δ0/|z0,αi, β̂}, .5:21/

the hierarchical Bayes estimate θ̂ (5.17) is

θ̂=
B∑

i=1
piti pi = exp.Δi/

/
B∑

k=1
cΔk .5:22/

and has frequentist standard deviation ŝd (3.11) from theorem 2.
Fig. 6 applies to the prostate cancer data, taking τ .δ/, the function of interest, to be δ itself,

i.e. the hierarchical Bayes estimate (5.17) is

θ̂=E.δ0|z0, β̂/, .5:23/
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Table 3. Comparison of hierarchical and empirical Bayes estimates for expected effect sizes in the prostate
cancer study†

Results for the following values of z0:

−4 −3 −2 −1 0 1 2 3 4

1 Bayes estimate −2.221 −1.480 −0.329 −0.093 −0.020 0.127 0.357 1.271 3.042
2 Empirical Bayes estimate −2.217 −1.478 −0.331 −0.092 −0.020 0.126 0.360 1.266 3.021
3 Bayes standard deviation 0.756 0.183 0.074 0.036 0.030 0.039 0.071 0.131 0.336
4 Bayes frequentist standard deviation 0.740 0.183 0.075 0.035 0.029 0.038 0.068 0.131 0.349
5 Empirical Bayes standard deviation 0.878 0.187 0.074 0.037 0.030 0.039 0.072 0.139 0.386

†Row 1, Bayes estimate θ̂ (5.23); row 2, empirical Bayes estimate E.δ0|z0,α= α̂, β̂/; row 3, Bayes posterior standard
deviation {Σpi.ti − θ̂/2}1=2; row 4, frequentist standard deviation of θ̂ (3.11); row 5, bootstrap standard deviation
(5.25).

the posterior expected effect size for a gene having z = z0. The calculations assume Poisson
regression model (5.10)–(5.12), beginning with Jeffreys prior π.α/. B=4000 bootstrap samples
(5.18) provided the Bayesian estimates, as in equations (5.19)–(5.22). (Tweedie’s formula (Efron,
2011) says that θ̂ in equation (5.23) equals z0 + d=dz log{fα̂.z/}|z0 , again allowing us to avoid
explicit characterization of the prior distributions gα.·/.)

The bold curve in Fig. 6 shows θ̂ as a function of z0. It stays near zero for z0 in [−2, 2/,
suggesting nullity for genes having small z-values, and then swings away from the horizontal
axis, indicating non-null effect sizes for large |z0|, but always with strong ‘regression to the mean’
behaviour: |θ̂|< |z0|. The vertical bars span ±1 frequentist standard deviation ŝd (3.11).

There was very little difference between the hierarchical and empirical Bayes results. The
graph of the empirical Bayes estimates

t.α̂/=E.δ0|z0,α= α̂, β̂/ .5:24/

follows the curve in Fig. 6 to within the line width. Table 3 gives numerical comparisons for
z0 =−4, −3, : : : , 4. The estimated standard deviations for the empirical Bayes estimates (row 5)
are a little bigger than those in row 3 for hierarchical Bayes estimates, but that may just reflect
the fact that the former are full bootstrap estimates whereas the latter are delta method standard
deviations.

Particularly striking is the agreement between the frequentist standard deviation estimates
for θ̂ (3.11) (row 4) and the posterior Bayes standard deviation estimates (row 3). This is the
predicted asymptotic behaviour (Berger (1985), section 4.7.8) if the effect of the prior distribution
has indeed been swamped by the data. It cannot be assumed, though, that agreement would
hold for estimates other than equation (5.23).

The empirical Bayes estimate t.α̂/=E.δ0|z0,α= α̂, β̂/ had its standard deviation sd (row 5 of
Table 3) calculated directly from its bootstrap replications,

sd=
{

B∑
1

.ti − t̄/2=B

}1=2

t̄ =
B∑
1

ti=B, .5:25/

compared with the Bayes posterior standard deviation (row 3)

ŝd=
{

B∑
1

pi.ti − θ̂/2
}1=2

θ̂=
B∑
1

piti: .5:26/
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Table 4. Polynomial model selection for the prostate cancer study data†

Results (%) for the following values of m:

4 5 6 7 8

1 Bootstrap % 32 10 5 1 51
2 Bayes expected 36 12 5 2 45
3 Frequentist standard deviation ±32 ±16 ±8 ±3 ±40

†Row 1, raw bootstrap proportions for best polynomial fit, Akaike information
criterion; row 2, corresponding Bayes posterior probabilities, Jeffreys prior; row 3, fre-
quentist standard deviations for the Bayes estimates.

(See remark 8 of Section 6 concerning the calculation of ti.) The difference comes from weighting
the B bootstrap replications ti according to pi (3.7), rather than equally. Lemma 3 of Efron (2012)
shows that the discrepancy, which is small in Table 3, depends on the empirical correlation
between pi and ti.

There is a similar relationship between rows 4 and 5 of Table 3. Remark 9 shows that sd (row
5) is approximated by

sd := .covTVα̂ cov/1=2, .5:27/

where cov is the unweighted bootstrap covariance between αi and ti:

cov=
B∑
1

.αi − ᾱ/.ti − t̄/=B ᾱ=
B∑
1
αi=B: .5:28/

This compares with the weighted version (3.10)–(3.11) of row 4. Weighting did not matter much
in Table 3, leaving the three standard deviations more alike than different.

The eighth-degree polynomial fit that was used in Fig. 5 might be excessive. For each of the
B =4000 bootstrap samples yÅ

i , the ‘best’ polynomial degree mÅ
i was selected according to the

Akaike information criterion, as detailed in section 5 of Efron (2012). Only degrees m = 0–8
were considered. The top row of Table 4 shows that 32% of the 4000 bootstrap samples gave
mÅ

i =4, compared with 51% for mÅ
i =8. (None of the samples had mÅ

i less than 4.)
Let t

.m/
i be the indicator for model m selection:

t
.m/
i =

{
1 if mÅ

i =m,
0 if mÅ

i 
=m.
.5:29/

Then

θ̂
.m/ =

B∑
i=1

pit
.m/
i .5:30/

is the posterior probability of the region R.m/ in the space of possible α-vectors where degree
m is best; for instance, θ̂

.4/
equals 36% in row 2.

We can apply theorem 2, expression (3.11), to obtain frequentist standard deviations for
the θ̂

.m/
. These are shown in row 3 of Table 4. The results are discouraging, with θ̂

.4/ = 36%
having ŝd=32% and so on. (These numbers differ from those in Table 2 of Efron (2012), where
the standard deviations were assessed by the potentially perilous ‘bootstrap-after-bootstrap’
method.) There was a strong negative frequentist correlation of −0:84 between θ̂

.4/
and θ̂

.8/

(using expression (2.20)). All of this suggests that the MLE α̂ lies near the boundary between
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R.4/ and R.8/, but not near the other regions. Bayesian model selection, of the limited type that
was considered above, is frequentistically unstable for the prostate cancer data.

6. Remarks

This section presents remarks, details and extensions of the previous material.

6.1. Remark 1: relationship of Bayes and frequentist standard deviations
In several of our examples the posterior Bayes estimate θ̂ had its posterior standard deviation
ŝdBayes quite close to ŝdfreq, the frequentist standard deviation. Why this might happen, or might
not, is easy to understand in the diabetes data example (2.29)–(2.30).

Let α̃ be the 10000×10 matrix with ith row αi − ᾱ, so

Σα= α̃Tα̃=B B=10000 .6:1/

is the empirical covariance matrix of the αi-vectors. For any fixed row vector x we define as our
parameter of special interest γx =xα (x=x125 in expression (2.29)). Each αi gives ti =xαi, with
average t̄ =xᾱ. The vector t̃ of centred values t̃i = ti − t̄ is given by

t̃ = α̃xT: .6:2/

Then

ŝd
2
Bayes =

B∑
1

t̃
2
=B=xΣαxT: .6:3/

Also, from equation (2.13),

ĉovT = t̃α̃=B=xΣα, .6:4/

yielding

ŝd
2
freq =xΣαGΣαxT .6:5/

from expression (2.28).
The variance ratio rat.x/ is

rat.x/=
(

ŝdfreq

ŝdBayes

)2

= xΣαGΣαxT

xΣαxT : .6:6/

Suppose that H =Σ1=2
α GΣ1=2

α has spectral decomposition H =ΓdΓT, with d the diagonal matrix
of eigenvalues. Then equation (6.6) reduces to

rat.x/=
p∑
1

div
2
i

/∑
v2

i .v =xΣ1=2
α Γ/: .6:7/

Table 5 shows the eigenvalues di. We see that rat.x/ could vary from 1.014 down to 0.098. For
the 442 diabetes patients, rat.xi/ ranged from 0.991 to 0.670, averaging 0.903; rat.x125/=0:962
was near the high end. A spherically uniform choice of v in expression (6.7) would yield an
average rat.x/ of 0.800.

The fact that the eigenvalues in Table 5 are mostly less than 1 relates to the Park and Casella
(2008) prior (2.23). A flat prior for model (2.22) has cov.α/=G−1, giving H = I and eigenvalues
di =1 in equation (6.7). The Park and Casella prior (2.23) is a ‘shrinker’, making Σα and H less
than I.
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Table 5. Eigenvalue di for the variance ratio rat.x/ (6.7)

di 1.014 1.009 0.986 0.976 0.961 0.944 0.822 0.710 0.482 0.098

A more general but less transparent formula for .ŝdfreq=ŝdBayes/
2 is available for possibly non-

linear parameters t.α/. As before, let pi be the weight on αi, with pi equalling 1=B or expression
(3.7) in Sections 2 and 3 respectively, giving t̄ =Σpiti and ᾱ=Σpiαi. Define si =√

pi.ti − t̄/ and
matrix M,

M =diag.p
1=2
i /α̃Vα̂α̃

T diag.p
1=2
i /, .6:8/

where α̃ has rows αi − ᾱ and Vα̂ is as in expression (3.11). The spectral decomposition M =ΓdΓ′
has p = rank.α̃/ non-zero eigenvalues di, with corresponding eigenvectors Γi, giving, after
straightforward calculations,

(
ŝdfreq

ŝdBayes

)2

=

p∑
1

dis
2
i

p∑
1

s2
i

si = sTΓi .6:9/

for θ̂=Σpiti; the ratio can range from a high of d1 to a low of dp, depending on how t.α/ aligns
with the eigenvectors of M.

6.2. Remark 2: a computational verification of lemma 1
Working directly with the implementation valuesμi, αi and ti (2.11)–(2.12), we can verify lemma
1 in the form in which it is actually used computationally. For x̃ any point in the sample space
of the sufficient statistic, define

Wμ.x̃/=fμ.x̃/=fμ.x/, .6:10/

with x the observed statistic. Letting x̃=x+dx with dx→0,

Wμ.x̃/= fμ.x/+f ′
μ.x/dx+o.dx/

fμ.x/
=1+αx.μ/dx+ r.x/ .6:11/

where the remainder r.x/=o.dx/=fμ.x/. Here we are assuming that fμ.x/ has continuous gra-
dient f ′

μ.x̃/ in a neighbourhood of x, and that fμ.x/> 0.
The importance sampling estimate of E{t.μ/|x̃} is

θ̂.x̃/=
B∑

i=1
ti Wi.x̃/

/ B∑
i=1

Wi.x̃/

=∑ ti.1+αi dx+ ri/
/∑

.1+αi dx+ ri/, .6:12/

with Wi = Wμi .x̃/, αi =αx.μi/ and ri = oi.dx/=fμi .x/. Denoting t̄ =Σ ti=B, tα=Σ tiαi=B, etc.,
equation (6.12) gives

θ̂.x+dx/= t̄{1+ .tα=t̄/dx+ tr=t̄}
1+ ᾱdx+ r̄

: .6:13/
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Since t̄ = θ̂.x/ and tr and r̄ are o.dx/, letting dx→0 yields

θ̂.x+dx/= θ̂+ .tα− t̄ᾱ/dx+o.dx/

= θ̂+ ĉov dx+o.dx/, .6:14/

with ĉov as in equation (2.13). This verifies lemma 1 as employed in the computational form of
theorem 1: ŝd= .ĉovT

Vμ̂ ĉov/1=2 (3.11).

6.3. Remark 3: an alternative form of lemma 1
Lemma 1 assumes the computational form ∇β̂ θ̂= ĉov.t,α/ (3.10) in an exponential family (3.1).
Defining

Oi =Qi=Q̄−Pi=P̄ .6:15/

as in equation (3.12), an equivalent expression for ĉov turns out to be

ĉov= θ̂ covÅ.O,α/, .6:16/

where covÅ is the usual unweighted bootstrap covariance

covÅ =
B∑

i=1
.αi − ᾱ/Oi=B ᾱ=

B∑
1
αi=B: .6:17/

(Note that Ō=0.) This leads to a convenient formula for the frequentist coefficient of variation
ŝd=|θ̂| of θ̂,

ĉv= .covT
ÅVα̂ covÅ/1=2, .6:18/

compared with the internal coefficient of variation sdÅ.O/=
√

B (3.12).

6.4. Remark 4: bias correction for ŝd
Monte Carlo calculation of ŝd, either by MCMC or bootstrap methods, can be improved by a
downward internal bias correction. Define Ŏi = θ̂Oi (6.15), ᾰi =V

1=2
α̂ αi, and vector

CB = covÅ.Ŏ, ᾰ/=
B∑

i=1
ᾰiŎi

/
B: .6:19/

Then formula (6.18) can be re-expressed as

ŝd
2 =‖CB‖2: .6:20/

Let C∞ denote the limit of CB as the number of parametric bootstrap replications B →∞.
The last expression in equation (6.19) suggests that CB has approximate bootstrap expectation
and covariance

CB ∼ .C∞, DB/, .6:21/

with DB the component of covariance from stopping at B replications rather than going on to
∞. Combining expressions (6.20) and (6.21) gives

ŝd
2 = ŝd

2
∞ + tr.DB/ .6:22/

(ŝd∞ being the ideal standard deviation estimate when B →∞), indicating an upward bias in
ŝd.

The bias-corrected standard deviation estimate for θ̂ is given by

s̆d
2 = ŝd

2 − tr.DB/: .6:23/
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Jackknife calculations provide a convenient estimate of tr.DB/: the B bootstrap replications are
divided into J groups of B=J each (e.g. J =20); CBj is computed as in equation (6.19) but with
the jth group of replications removed, giving the J ×p matrix C with rows CBj; finally the p×p

sample covariance matrix of C gives the estimate

tr.DB/= .J −1/2

J
tr{cov.C/}: .6:24/

DB decreases at rate 1=B, and the large choices of B in our examples made the bias correction
(6.23) insignificant.

6.5. Remark 5: binomial deviance difference
The binomial generalized linear model for the cell infusion data analysis (3.17)–(3.18) has half-
deviance difference

Δ=
5∑

j,k=1
..ηjk − η̂jk/.ξjk + ξ̂jk/−2 log[{1+ exp.ηjk/}={1+ exp.η̂jk/}]/, .6:25/

where ηjk = log{ξjk=.1− ξjk/}. Here we have suppressed subscript i.

6.6. Remark 6: a vector parameter example
The joint frequentist behaviour of the 0.90 credible interval end points [0:292, 0:380] in Fig. 2
involved the vector parameter form (2.20) of the general accuracy formula, carried out by the
bootstrap sampling method of Section 3.

With Ic.γ/ the indicator function of γ � c, we define the bivariate parameter replication
ti = .I2:92.γi/, I3:80.γi// for i=1, 2, : : : , B=2000. Then ĉov (3.10) is a 2×2 matrix, as is v̂ar (3.11).
The weighted bootstrap density f̂ .γ/ had numerical derivatives .dlo, dup/= .0:466, 0:330/ at the
interval end points; (

dlo 0
0 dup

)−1

v̂ar
(

dlo 0
0 dup

)
=
(

0:0476 0:0678
0:0678 0:0968

)
.6:26/

is the usual delta method covariance matrix estimate for the end points, giving them frequentist
standard deviations 0.218 and 0.311, and correlation 0.999.

6.7. Remark 7: approximate bootstrap confidence calculations for the diabetes data
The abc algorithm (DiCiccio and Efron, 1992) provides second-order-accurate confidence
intervals for scalar parameters θ=T.β/ in p-parameter exponential families (3.1). It does this
by recomputing the MLE θ̂= T.β̂/ for values of b near β̂ (only 4p + 4 recomputations are
needed), calculating 2p+2 numerical second derivatives, and using these to make second-order
adjustments to the standard intervals θ̂±c ŝd. An R version of abc is available from the author.

The full bars in Fig. 3 are ABC intervals for the point estimates

θ̂c = P̂r.γ125 � c|β̂/, .6:27/

(2.29). Here Ĝ (4.10) was the p-parameter exponential family, p = 10, with αi (2.26) the B =
10000 MCMC vectors, weights pi =1 in expression (4.8). Taking Ĝ’s reversed roles of α and β
into consideration, the abc call was

abc(TT, ahat, S, bhat, mu) .6:28/
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Table 6. abc algorithm calculations for the diabetes data, Fig. 3†

c θ̂ ̂sd a z0 cq abc results abcq results

lo up lo up

0.04 0.00 0.01 0.00 0.27 1.50 0.00 0.06 0.00 0.03
0.08 0.01 0.03 0.01 0.21 1.17 0.00 0.13 0.01 0.09
0.12 0.04 0.08 0.00 0.12 0.88 0.00 0.25 0.02 0.22
0.16 0.11 0.19 0.00 0.05 0.60 0.02 0.44 0.03 0.45
0.2 0.25 0.32 0.00 0.02 0.33 0.05 0.63 0.04 0.68
0.24 0.46 0.40 0.00 −0.02 0.05 0.13 0.80 0.08 0.86
0.28 0.67 0.36 0.00 −0.02 −0.23 0.28 0.92 0.23 0.95
0.32 0.84 0.24 0.00 −0.03 −0.50 0.49 0.98 0.47 0.96
0.36 0.94 0.12 0.00 −0.03 −0.78 0.71 0.99 0.73 0.97

†.a, z0, cq/ are the three coefficients that adjust the standard limits θ̂± ̂sd to second-order accuracy (DiCiccio and
Efron, 1992). The abc limits (seventh and eighth columns) were not much different from the purely local abcq
limits (ninth and 10th columns).

where mu was the function

mu.b/=
B∑

i=1
Wi.b/αi

/ B∑
i=1

Wi.β/ Wi.b/= exp{.b− β̂/Tαi}, .6:29/

bhat = β̂= XTy, ahat=mu(bhat), and S the p×p covariance matrix of the αi; TT was the
function

TT.a/=
B∑

i=1
Wi.b/tci

/ B∑
i=1

Wi.b/, b=mu−1.a/, .6:30/

where tci = tc.αi/ (2.31), and mu−1 was the inverse function of mu, calculated to accuracy 10−11

by using Newton–Raphson iteration. (The inversion is necessary because θ̂= s.b/ (4.12) is a
function of the natural parameter b of Ĝ, but abc requires θ̂ stated in terms of the expectation
parameter: a in the case of Ĝ.)

Table 6 displays a portion of the abc output going into Fig. 3. Besides θ̂ and ŝd, it shows
the three second-order correction coefficients that were described in DiCiccio and Efron (1992):
acceleration a and bias correction z0 are mostly ignorable, but the quadratic coefficient cq is
not. It has a major effect on the abcq limits, which is a version of abc that is purely local in
the sense of only recomputing T.b/ for b near β̂.

The abc limits in Fig. 3 involve one non-local recomputation. They enjoy tranformation
invariance, monotone transformations of the parameter of interest producing the same trans-
formation of the interval end points, which might be helpful for parameters like θc restricted to
the interval [0, 1]. However, in this case they were not much different from the abcq versions.

6.8. Remark 8: Tweedie’s formula for the prostate data
Both Bayes and empirical Bayes hierarchical analyses require evaluation of ti =E{τ .δ0/|z0,αi, β̂}
(5.21) for i = 1, 2, : : : , B. This is straightforward when τ .δ/ = δ as in Fig. 6. Tweedie’s formula
(Efron, 2011) says that

E.δ0|z0,α/= z0 + d
dz

log{fα.z/}|z0 , .6:31/
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where fα.z/ is the marginal density (5.4). In terms of notation (5.11)–(5.12),

ti = cj0 + ẋj0αi, .6:32/

where j0 is the bin index (5.9) for z0, and

ẋj = .0, 1, 2cj, 3c2
j , : : : , 8c7

j /: .6:33/

Theoretically there is a version of Tweedie’s formula applying to any function τ .δ/ (called
‘Bayes rule in terms of f ’ in Efron (2014)). The case τ .δ/=δ, however, is particularly favourable
to generalized linear model modelling of the marginal density f.z/ (5.4). Other choices of τ .δ/
may require models for f that are not generalized linear models, returning hierarchical Bayes
analysis to the general, non-exponential family framework of Section 2.

6.9. Remark 9: empirical Bayes standard deviation formula
The empirical Bayes standard deviation formula (5.27) is easy to derive in exponential families.
We assume, for convenience, that the sufficient statistic x takes on only a finite number J of
possible values, so that the marginal density fα.·/ is represented by a J-vector fα. Let Q be the
gradient of t.α/ = E{τ .δ0/|z0,α} with respect to f (specific formulae for Q are given in Efron
(2014)) and ḟα the J ×p derivative matrix (@fαj =@αk). Then a first-order Taylor series expansion
gives

t.α̂/− t.α/
:=QT ḟα.α̂−α/: .6:34/

This yields

sd{t.α̂/}2 :=QT ḟαΣα ḟαQ Σα= covα.α̂/ .6:35/

and

cov{t.α̂/, α̂} :=QT ḟαΣα, .6:36/

so

sd{t.α̂/}2 := cov{t.α̂/, α̂}TΣ−1
α cov{t.α̂/, α̂}: .6:37/

But Σ−1
α

:= covα.β̂/=Vα in exponential families, giving

sd{t.α̂/}2 := cov{t.α̂/, α̂}TVα cov{t.α̂/, α̂}: .6:38/

Formula (5.27) for sd is the bootstrap evaluation of expression (6.38).
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