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Abstract

We describe an automatic variational inference method for approximating the
posterior of differentiable probability models. Automatic means that the statistician
only needs to define a model; the method forms a variational approximation,
computes gradients using automatic differentiation and approximates expectations
via Monte Carlo integration. Stochastic gradient ascent optimizes the variational
objective function to a local maximum. We present an empirical study that applies
hierarchical linear and logistic regression models to simulated and real data.

1 Introduction

Statistical inference studies the mechanism that gives rise to a set of random variable observations
X. The mechanism is unknown, so we propose a probabilistic model p(X,Z); it describes the data
with latent variables Z. The core computational challenge of inference is computing the posterior
distribution p(Z | X) of the latent variables conditioned on the observed dataset.

Complex models present intractable posterior densities. Variational inference approximates the
posterior with a simpler parameterized class of functions q(Z;φ). Inference becomes an optimization
problem that requires computing expectations of the model under the variational family. Analytic
forms for these expectations are only available for a small class of models.

We propose a new variational inference algorithm for models with differentiable likelihoods. These
are the models supported by the Stan probabilistic modeling language (Stan Development Team,
2014). We call our method variational Bayes in Stan (VBSTAN).1 In VBSTAN, the statistician writes a
model. The Stan compiler transforms any constrained variables (e.g., a positive variance term) into
an unconstrained space, where we posit a Gaussian variational family. We approximate expectations
via Monte Carlo integration and use automatic differentiation (AD) to compute gradients of the model.
Stochastic gradient ascent maximizes the variational objective function using these noisy gradients.

We present a preliminary study using two hierarchical regression models: Bayesian linear regression
with automatic relevance determination (ARD) (Murphy, 2012) and multi-level logistic regression
(Gelman and Hill, 2006). We study the convergence of VBSTAN on the former model, and accuracy
and speed on the latter, applied to polling data from the 1988 presidential election.

1VBSTAN is in active development at https://github.com/stan-dev/stan/tree/feature/bbvb.
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Related work. Titsias and Lázaro-Gredilla (2014) propose a variational inference algorithm which
include the Gaussian variational family, but cannot deal with constrained latent variables. Ranganath
et al. (2014) develop a more general technique, but posit specific variational forms for different
models. Salimans and Knowles (2014) present a stochastic linear regression perspective, but also
rely on specifying a variational approximation. Kingma and Welling (2013); Rezende et al. (2014)
derive variational inference algorithms based on gradients of the likelihood, but do not provide a
generic way to determine the variational approximation. Wingate and Weber (2013) cast these ideas
to probabilistic programs.

2 Automatic Variational Inference in Differentiable Models

Let p(X,Z) be a differentiable joint density with respect to Z; the observations are X, the latent vari-
ables Z are of dimension K. The posterior p(Z | X) describes the latent variables conditioned on the
data. Variational inference minimizes the Kullback-Leibler (KL) divergence from an approximating
variational family q(Z;φ) with parameters φ to the posterior density p(Z | X).

Constrained latent variables. The latent variables may have constrained support. Denote the
support of z as supp(z). We first transform the support to the real coordinate space RK . Define a
one-to-one function f : supp(z)→ RK such that the transformed variables z̃ = f (z) have support on
RK . The unconstrained model becomes

p(X,Z) = p
(

X, f−1(Z̃)
)∣∣detJ f−1(Z̃)

∣∣,
where J f−1(Z̃) is the Jacobian of the inverse of f .

Variational family. We then posit a Gaussian variational family q(Z̃; µ,Σ) parameterized by mean
vector µ ∈ RK and covariance matrix Σ ∈ R(K×K). The problem of minimizing the KL divergence is
equivalent to maximizing the evidence lower bound (ELBO) (Jordan et al., 1999). We write the ELBO
in the unconstrained space as

L (µ,Σ) =
∫

q(Z̃; µ,Σ) log

 p
(

X, f−1(Z̃)
)∣∣detJ f−1(Z̃)

∣∣
q(Z̃; µ,Σ)

 dZ̃

= Eq(Z̃;µ,Σ)

[
log p

(
X, f−1(Z̃)

)
+ log

∣∣detJ f−1(Z̃)
∣∣]−Eq(Z̃;µ,Σ)

[
logq(Z̃; µ,Σ)

]
. (1)

The ELBO is a function of the variational parameters (µ,Σ). The second term is the entropy of a
multivariate Gaussian, which has an analytic expression. This optimization problem is equivalent to
proposing a transformed multivariate Gaussian as the variational family. To maximize the ELBO we
use its gradients with respect to (µ,Σ). These gradients depend on the form of the variational family.
We consider two cases for q(Z̃; µ,Σ): full-covariance (Σ is full-rank) and mean-field (Σ is diagonal).

Full-covariance approximation. Define the following affine transformation of the variational
family ž = L−1(z̃− µ) where L is the lower-triangular Cholesky factor of the covariance matrix
Σ = LL>. This standardizes the variational distribution as ž ∼N (0,I). The first expectation in
Equation (1) discards its dependency on the variational parameters. Thus, the ELBO becomes

L (µ,L) = Eq(Ž;0,I)

[
log p

(
X, f−1(LŽ+µ)

)
+ log

∣∣detJ f−1(LŽ+µ)
∣∣]

+
1
2

K(1+ log2π)+∑
k

log
∣∣Lkk

∣∣,
where the last two terms are from the entropy. The index k ∈ {1, . . . ,K} goes along the diagonal of L.

To compute the gradient of the ELBO, we exchange derivatives and expectations. We use the AD
library in Stan and Monte Carlo integration to compute the model-specific gradient. The gradient
with respect to µ is

∇µL (µ,L) = Eq(Ž;0,I)
[
stan::model::gradient(LŽs +µ)

]
. (2)

We use S samples Žs ∼N (0,I) to compute a noisy estimate of this expectation. The Stan function
stan::model::gradient accounts for the Jacobian term via the chain rule of differentiation.
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Figure 1: Convergence of VBSTAN using Bayesian linear regression with ARD. Lines and shaded
areas represent the mean and min/max of 10 runs per configuration. ELBO computed using S = 1000.

The noisy gradient for an entry in L is

∇Li jL (µ,L)≈ 1
S

S

∑
s=1

[stan::model::gradient(Z̃s)i · (Žs) j]+L−1
i j 1i= j, (3)

where the indices (i, j) traverse the rows and columns of a lower triangular square matrix of size K.
The entropy term only contributes along the diagonal, as denoted by the indicator function 1i= j.

The Cholesky decomposition is not unique for positive semidefinite matrices. (Consider sign permu-
tations.) Requiring the diagonal of L to be positive would enforce uniqueness. However, the standard
decomposition yields a simpler optimization routine.

Mean-field approximation. Define the following affine transformation of the variational family
ž = diag(σ−1)(z̃− µ) where σ is the vector of standard deviations such that Σ = diag(σ2). This
similarly standardizes the variational distribution; the entropy term in the ELBO becomes ∑k logσk.

The gradient with respect to µ is the same as in Equation (2). The gradient with respect to the
standard deviations has a subtlety: we must ensure positivity. To that end, define σ̃ = logσ , applied
element-wise. The support of σ̃k is now the real line, and we can write the standardized latent
variables as ž = diag(exp(σ̃)−1)(z̃−µ). The gradient for an entry of σ̃ is similar to Equation (3),

∇σ̃k
L (µ, σ̃)≈ 1

S

S

∑
s=1

[stan::model::gradient(Z̃s)k · (Žs)k · exp(σ̃)k]+1. (4)

Stochastic gradient ascent. The gradients in Equations (2) to (4) are all noisy approximations of
the true gradients of the ELBO. We use these gradients in a stochastic gradient ascent algorithm with
an adaptive learning rate (Tieleman and Hinton, 2012).

3 Empirical Study

First, we investigate Bayesian linear regression with ARD. We simulate a dataset with 10 regressors
and 100 observations. Figure 1 shows the convergence of VBSTAN as the number of Monte Carlo
integration terms S vary. Both algorithms succeed at optimizing the ELBO to a local maximum.

Second, we study hierarchical logistic regression with polling data. We estimate a single outcome
(probability of voting Republican) from a CBS news dataset, which has 11,566 responses from the
week before the 1988 presidential election. There are two predictors for gender and race. Each state
receives its own intercept, distributed according to a Gaussian with mean µα and standard deviation
σα . (See Chapter 14.1 of Gelman and Hill, 2006, for more details.)

Table 1 shows the posterior means and standard deviations of the latent variables. All algorithms
estimate similar values for the regressors β , but mean-field VBSTAN reports notably larger standard
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Table 1: Accuracy (means and standard deviations) and speed of VBSTAN using hierarchical logistic
regression. “Sampling” refers to Stan’s Hamiltonian Monte Carlo algorithm. Both VBSTAN algorithms
use S = 10 samples.

Sampling Full-covariance Mean-field

β female −1.8 (8.6×10−2) −1.8 (1.9×10−2) −1.8 (8.1×10−2)
β black −0.1 (4×10−2) −0.1 (6.3×10−2) −0.1 (2.5×10−2)

µα 0.4 (7.3×10−2) 0.4 (2.7×10−2) 0.4 (1.6×10−1)
σα 0.4 (6.1×10−2) 0.5 (2.3×10−2) 0.6 (4.7×10−1)

runtime ∼ 30s (default params) ∼ 15s (1,000 iters) ∼ 12s (1,000 iters)

deviations for the mean and standard deviation of the states (µα , σα ). Preliminary timing mea-
surements indicate that VBSTAN is faster than sampling for a dataset of this size; both algorithms
converged before 1,000 iterations, by visual inspection of the ELBO (not shown).

4 Conclusion and Future Work

VBSTAN is an automatic variational algorithm for statistical inference of differentiable probability
models. The variational approximation is a transformed Gaussian family implicitly defined on
the constrained space of latent variables. Stochastic optimization with Monte Carlo integration
circumvents the need to derive any of the expressions typically required for variational inference.

There are theoretical and practical directions for future work. Natural and higher-order gradients
should lead to faster algorithms. Alternatives to the Gaussian approximation could increase VBSTAN’s
accuracy with heavy- or light-tailed likelihoods. High-dimensional models with many latent variables
could benefit from sparse covariance estimation. Assessing convergence using noisy estimates of the
ELBO will be important in practice. Data sub-sampling should scale VBSTAN to massive datasets.
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