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Interval estimates – estimates of parameters that include an allowance for sampling uncertainty
– have long been touted as a key component of statistical analyses. There are several kinds of
interval estimates, but the most popular are confidence intervals (CIs): intervals that contain
the true parameter value in some known proportion of repeated samples, on average. The width
of confidence intervals is thought to index the precision of an estimate; the parameter values
contained within a CI are thought to be more plausible than those outside the interval; and the
confidence coefficient of the interval (typically 95%) is thought to index the plausibility that
the true parameter is included in the interval. We show in a number of examples that CIs do
not necessarily have any of these properties, and generally lead to incoherent inferences. For
this reason, we recommend against the use of the method of CIs for inference.

“You keep using that word. I do not think it means what you think
it means.”

Inigo Montoya, The Princess Bride (1987)

The development of statistics over the past century has
seen the proliferation of methods designed to make infer-
ences from data. Methods vary widely in their philosophical
foundations, the questions they are supposed to address, and
their frequency of use in practice. One popular and widely-
promoted class of methods are interval estimates, which in-
clude frequentist confidence intervals, Bayesian credible in-
tervals and highest posterior density (HPD) intervals, fiducial
intervals, and likelihood intervals. These procedures differ in
their philosophical foundation and computation, but infor-
mally are all designed to be estimates of a parameter that ac-
count for measurement or sampling uncertainty by yielding
a range of values for the parameter instead of a single value.

Of the many kinds of interval estimates, the most popular
is the confidence interval (CI). Confidence intervals are intro-
duced in almost all introductory statistics texts; they are rec-
ommended or required by the methodological guidelines of
many prominent journals (e.g., Psychonomics Society, 2012;
Wilkinson & the Task Force on Statistical Inference, 1999);
and they form the foundation of proposed methodological
reformers’ programs (Cumming, 2014; Loftus, 1996). How-
ever, there is a tremendous amount of confusion in among re-
searchers, methodologists, and textbook authors about what
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exactly a confidence interval is and how it may be inter-
preted. We believe that the confusion about what CIs are
drives their promotion; if researchers understood what CIs
actually are, and what inferences that can or cannot support,
they would not be promoted as commonly as they are. Our
goal is to alleviate confusion about CIs and to call into ques-
tion whether they can be used for sound inference.

We begin by precisely defining confidence intervals. We
then outline three common myths about confidence interval
that have been perpetuated by proponents of confidence in-
tervals. Using several examples, we show how it is not nec-
essary that confidence intervals have any of the properties
commonly ascribed to them; that is, confidence intervals, as
general inference tools, have been misrepresented. Finally,
we discuss methods that – under certain assumptions – do
have the properties that researchers desire.

Confidence Intervals

In a classic paper, Neyman (1937) laid the formal founda-
tion for confidence intervals. Before defining confidence in-
tervals, we describe the practical problem that Neyman saw
confidence intervals as solving. Suppose a researcher is in-
terested in estimating a parameter, which we may call θ. This
parameter could be a population mean, an effect size, a vari-
ance, or any other quantity of interest. Neyman suggests that
researchers perform the following three steps:

a. Perform an experiment, collecting the relevant data.

b. Compute two numbers – the smaller of which we can call
L, the greater of which U – forming an interval (L,U)
according to an algorithm.
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c. State that L < θ < U – that is, that θ is in the interval.

This recommendation is justified by choosing an algorithm
for step (b) such that in the long run, the researcher’s claim
in step (c) will be correct, on average, X% of the time. A
confidence interval is any interval computed using such a
procedure.

Definition 1 (Confidence interval) A X% confidence inter-
val for a parameter θ is an interval (L,U) generated by an
algorithm that in repeated sampling has an X% probability
of containing the true value of θ (Neyman, 1937).

Although skepticism about the usefulness of confidence
intervals began as soon as Neyman laid out the theory (e.g.,
the discussion of Neyman, 1934)1, confidence intervals have
grown in popularity to be the most widely used interval es-
timators. Perhaps the most commonly used CI is the CI for
the mean of the normal distribution with unknown variance.

x̄ ± t∗
s
√

N
(1)

where x̄ and s are the sample mean and standard deviation,
N is the sample size, and t∗ the quantile from Student’s tN−1
distribution chosen such that

Pr(|tN−1| < |t∗|) = X%

for an X% CI. This confidence interval is taught to first-
year statistics students all over the world and used in papers
throughout the scientific literature.

Figure 1 shows 200 random 50% confidence intervals, all
constructed from draws of sample size N = 2 from the same
Normal(100,152) population. Some of the confidence inter-
vals, denoted by dark lines, include the true mean θ = 100;
others do not and are denoted with light lines. Of this sam-
ple of 200 confidence intervals, 107 (53.5%) contain the true
value; if we were to continue sampling more CIs, this pro-
portion would approach the confidence coefficient X = 50%.
Note that with two observations t∗ = 1 and s = |x1 − x2|/

√
2,

meaning that the 50% Student’s t CI is simply the interval
between the two observations. We make use of the simplicity
of the 50% CI with two observations throughout.2

The definition of a confidence interval seems, on its face,
straightforward: a CI is an interval generated by some pro-
cedure that creates intervals containing the true value of a
parameter in some fixed proportion of repeated samples, on
average. Put another way, if one were to always make the
dichotomous claim that the true value is in a specific interval
computed from the procedure, one would be correct in that
same proportion of repeated samples. “Confidence” is thus
an average property of a procedure. It is conceptually help-
ful, therefore, to distinguish between a confidence procedure
(CP) and a confidence interval (CI). For the purposes of this
paper we will use the term confidence procedure to denote
the algorithm, and confidence interval to denote specific re-
alizations from the algorithm.
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107 CIs contain the true value (53.5%)

Figure 1. 200 random 50% CIs for a normal mean with un-
known variance, based on 2 draws from a Normal(100, 152)
distribution. Dark (blue) lines denote CIs that contain the
true mean; light (red) lines denote those that do not. CIs are
sorted by length.

Myths of Confidence

Confidence intervals are described broadly as tools for ex-
tracting the necessary information about the parameter from
the data. However, the relationship between the definition of
the confidence interval and anything a researcher would want
to know is unclear: we might know the average properties of
the procedure, but what implications does this have for infer-
ence from a specific interval? Various heuristic explanations
are used by textbook authors and proponents of confidence
intervals in the literature to help bridge the gap between the
theoretical definition of the confidence interval and proper-
ties that are important to analysts, such as the plausibility
of specific parameter values or the precision of an estimate.
In this section, we explain how the various heuristic expla-
nations of confidence intervals are actually myths: they are
not true of confidence intervals in general. We present two
examples that show how the logic of inference by CI fails.

Example 1: The lost submarine

1For instance, in this discussion Bowley states “Does [the con-
fidence interval] really lead us towards what we need – the chance
that in the universe which we are sampling the proportion is within
these certain limits? I think it does not. I think we are in the posi-
tion of knowing that either an improbable event has occurred or the
proportion in the population is within the limits. To balance these
things we must make an estimate and form a judgment as to the like-
lihood of the proportion in the universe [that is, a prior probability]
– the very thing that is supposed to be eliminated.”

2The more typical choice of 95% confidence is, of course, arbi-
trary. All of the points we make in this paper extend to 95% CIs
and N > 2, with the drawback that the arguments would be more
mathematically involved and less transparent. Because our goal is
to demonstrate that the logic of using confidence intervals for infer-
ence is flawed, we opt to use the simplest case.
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Bubbles
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Figure 2. Submersible rescue attempts. See text.

A 10-meter-long research submersible with several peo-
ple on board has lost contact with its surface support vessel.
The submersible has a rescue hatch exactly halfway along its
length, to which the support vessel will drop a rescue line.
Because the rescuers only get one rescue attempt, it is cru-
cial that when the line is dropped to the craft in the deep
water that the line be as close as possible to this hatch. The
researchers on the support vessel do not know where the sub-
mersible is, but they do know that it forms distinctive bub-
bles. These bubbles could form anywhere along the craft’s
length, independently, with equal probability, and float to the
surface where they can be seen by the support vessel.3

The situation is shown in Figure 2A. The rescue hatch is
the unknown location θ, and the bubbles can rise anywhere
from θ−5 meters (the bow of the submersible) to θ+5 meters
(the stern of the submersible). The rescuers want to use these
bubbles to learn where the hatch is located, so they consult
the frequentist statistician on board. The statistician, being
an advocate of the use of confidence intervals, tells the res-
cuers how confidence intervals can be used to estimate the
location of the hatch. He notes that the location of these
first two bubbles form a 50% confidence interval for the θ,
because there is a 50% probability that two bubbles will be
on opposite sides of the hatch. In more familiar terms, the
statistician has chosen the 50% confidence procedure

x̄ ±
|x1 − x2|

2
,

where x1 and x2 are the locations of the first and second bub-
bles, respectively, and x̄ is the mean location. The statistician
justifies this confidence procedure on the grounds that it is
the same as the 50% Student’s t procedure with N = 2. We
denote this procedure Confidence Procedure 1 (CP1).

The rescuers see the first two bubbles, shown as circles in
Figure 2A. The two bubbles are very close together, yielding
the narrow 50% confidence interval shown above the bub-
bles. The statistician excitedly reports to the rescue workers
that this narrow CI indicates that the knowledge of the hatch
location is quite precise, and that he is 50% certain that the
hatch is in the confidence interval. He advises them to drop
the rescue line.

The statistician’s opinion has been guided by the claims
made by the advocates of CIs. The relationship between CIs
and precision, or power, is often cited as one of the primary
reasons they should be used over null hypothesis significance
tests (e.g., Cumming & Finch, 2005; Cumming, 2014; Fidler
& Loftus, 2009; Loftus, 1993, 1996). For instance, Cum-
ming (2014) writes that “[l]ong confidence intervals (CIs)
will soon let us know if our experiment is weak and can give
only imprecise estimates,” and Young and Lewis (1997) state
that “[t]he width of the CI gives us information on the preci-
sion of the point estimate.”

One of the rescue workers, however, is skeptical. She
notes that there are a wide range of locations that are possi-
ble for the location of the hatch. Because the craft is 10 me-
ters long, no bubble can originate more than 5 meters from
hatch. Given two bubbles, the only possible locations for
the hatch are within 5 meters of both bubbles. These values
are shown as the shaded region in Figure 2A labeled “poste-
rior”. The bubbles themselves give no reason to prefer any
of these locations over another. The skeptical rescue worker
says that because the second bubble was so close to the first,
collectively the bubbles have actually provided very impre-
cise information. She suggests waiting for more bubbles be-
fore dropping the line.

The statistician, on the authority of the many advocates of
confidence intervals, convinces the rescuers to drop the line
inside the 50% CI. The rescue line misses the hatch by 3.75
meters. By the time the rescue workers realize they have
missed the hatch, there is no more time for another attempt.
All crew on board the submersible are lost.

The statistician has fallen victim to a myth about confi-
dence intervals that we dub the “precision error”:

Myth 1 (The Precision Error) “The width of a confidence
interval indicates the precision of our knowledge about the
parameter. Narrow confidence intervals show precise knowl-
edge, while wide confidence errors show imprecise knowl-
edge.”

There is no necessary connection between the precision of
an estimate and the size of a confidence interval. In the case
of the submarine, the narrow confidence interval yielded im-
precise imprecise information about the location of the sub-
marine hatch. In fact, as we shall see, the narrowness of
an interval from CP1 and the precision are actually inversely
related, as the next situation will make clear.

Oddly enough, a second boat is in a similar situation to
the first half a world away. The researchers on the boat
have contact with their submersible, and like the first boat
are planning to mount a rescue using the distinctive bubbles.
They consult their statistician, who advises them to wait for

3This example was adapted from Welch (1939) and Berger and
Wolpert (1988).
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the first two bubbles and use a 50% CI from Confidence
Procedure 1. While the rescue team waits for the bubbles
to appear, the statistician notes that CP1 does not directly
make use of the known variance of the bubble locations. She
quickly computes an alternative 50% confidence procedure,
which we denote Confidence Procedure 2 (CP2):

x̄ ±
(
5 −

5
√

2

)
(2)

This confidence procedure makes use of the fact that there is
a 50% probability that x̄ falls within 5− 5/

√
2 = 1.46 meters

of the hatch. The rescuers alert the statistician that the first
two bubbles have been observed, as shown in Figure 2B. The
bubbles are almost 10 meters apart.

The statistician computes the confidence intervals using
CP1 and CP2. The interval from CP1 is nearly as wide as
it can possibly be. At first, the statistician despairs, thinking
that the first two bubbles have led to extremely imprecise in-
formation. But then the statistician notes that the width of
the interval from CP2 never changes, confusingly suggesting
that the width of the CI need not be function of precision in
the data.

Faced with seemingly contradictory information from the
two CIs about the precision of the estimate x̄, the statistician
decides to follow a different line of reasoning. Thinking her
CP2 superior due to the fact that it directly used information
about the width of the submersible, she reasons about the
likely values for the location of the hatch. She believes that
by virtue of being contained in her interval, the values inside
the confidence interval should all be taken seriously as esti-
mates of the hatch location. This second, widely-mistaken
interpretation of intervals – that specific parameters in the
interval are “likely” or “plausible” – we dub the likelihood
error:

Myth 2 (The Likelihood Error) “A confidence interval
contains the likely values for the parameter. Values inside
the confidence interval are more likely than those outside.”
This error exists in several varieties, sometimes involving
plausibility, credibility, or reasonableness of beliefs about
the parameter.

Loftus (1996), for instance, says that the CI gives an “indi-
cation of how seriously the observed pattern of means should
be taken as a reflection of the underlying pattern of popula-
tion means.” This logic is used when when confidence inter-
vals are used to test theory (Velicer et al., 2008) or to argue
for the null (or practically null) hypothesis (Loftus, 1996).
The problem with the logic of the likelihood error is that a
confidence interval may contain impossible values, or may
exclude values that are just as plausible as ones inside the
interval. For instance, the CI for the first submarine failed to
contain most of the likely values, leading the statistician to
believe his estimate was very precise.

The second statistician notes that the interval from CP2 is
2.93 meters wide. Thinking that all values within this interval
are “likely”, she advises risking waiting for a few more bub-
bles to narrow the confidence interval. However, a perceptive
rescue worker challenges the statistician. He notes that they
know very precisely where the hatch must be: halfway be-
tween the two bubbles! The bubbles were almost as far apart
as they could be, which means they must have come from
opposite ends of the craft. If they came from opposite ends
of the craft, then the hatch must be almost exactly in the mid-
dle. The only possible locations for the hatch are shown in
the top line of Figure 2B, labeled “posterior.” In fact, nearly
all of the values contained in the 50% CIs computed from
CP1 and CP2 are impossible; the hatch could not possibly be
located there.

The rescue worker advises to ignore the statistician and to
drop the rescue line halfway between the bubbles. The argu-
ment of the rescue worker convinces the other rescue work-
ers. The rescue line meets the hatch, and all crew members
aboard the submersible are saved.

In the rescue attempts of both submarines, the statisticians
used the same logic recommended by the advocates of con-
fidence intervals in an effort to determine the location of the
submarine hatch. In both cases, the judgment of the statis-
tician was flawed. We now consider how the confidence in-
terval could be so misleading. In the example, the likelihood
and precision errors are easily seen; CIs can contain mostly
impossible values, and the precision of an estimate available
in the data can be inversely related to the narrowness of the
CI, or not related at all. The logic of the likelihood and pre-
cision interpretations of CIs simply do not follow from the
definition of a confidence procedure; some confidence inter-
vals may have these properties, others may not.

If the precision and likelihood interpretations of confi-
dence intervals are incorrect, what can we say about CIs?
The definition of a confidence interval makes clear how to in-
terpret a confidence procedure. However, when we compute
a specific interval from the data and must interpret it, we are
faced with difficulty. It is not obvious how to move from our
knowledge of the properties of the confidence procedure to
the interpretation of the confidence interval.

Textbook authors and proponents of confidence intervals
bridge the gap seamlessly by claiming that the properties
of confidence procedures can be applied to individual con-
fidence intervals. For instance, Masson and Loftus (2003)
state that “[t]he interpretation of the confidence interval con-
structed around that specific mean would be that there is a
95% probability that the interval is one of the 95% of all pos-
sible confidence intervals that includes the population mean.
Put more simply, in the absence of any other information,
there is a 95% probability that the obtained confidence inter-
val includes the population mean.” Cumming (2014) writes
that “[w]e can be 95% confident that our interval includes
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[the parameter] and can think of the lower and upper limits
as likely lower and upper bounds for [the parameter].

This interpretation, although seemingly natural, is incor-
rect. We dub this incorrect reasoning the “Fundamental Con-
fidence Fallacy” (FCF). The FCF is fundamental because it
seems to flow naturally from the definition of the confidence
interval:

Myth 3 (The Fundamental Confidence Fallacy) “If the
probability that a random interval contains the true value is
X%, then the plausibility (or probability) that a particular
observed interval contains the true value is also X%.”

The reasoning behind the Fundamental Confidence Fal-
lacy seems plausible: on a given sample, we could get any
one of the possible confidence intervals. Because 95% of the
possible confidence intervals contain the true value, without
any other information it seems reasonable to say that we have
95% certainty that the true value is in our calculated confi-
dence interval. This interpretation is suggested by the name
“confidence interval” itself: the word “confident”, in lay use,
is closely related to concepts of plausibility and belief. The
name “confidence interval” therefore invites the FCF as an
interpretation.

The first hint that the FCF is a fallacy is the fact that, as we
have seen, for any given problem there could be more than
one confidence procedure. If the mere fact that a confidence
procedure has a confidence coefficient of X% implied that
any interval computed from that procedure has a X% prob-
ability of containing the true parameter value, then two in-
tervals computed with the same data from two different 50%
confidence procedures will both have a 50% probability of
containing the true value.

Consider CP1 and CP2; both are centered around x̄. If in-
tervals from CP1 and CP2 both have a 50% probability of
containing the true value, then the laws of probability re-
quire that all of the 50% probability be concentrated in the
shorter of the two intervals – otherwise, the longer of the
two intervals would have > 50% probability of containing
the true value. This seems to imply that if we have two pro-
cedures that are always nested within one another, as CP1
and CP2 are, then we can simply take the shorter of the two
— whichever that is — as our 50% CI. But since both CP1
and CP2 are 50% CIs, then the procedure taking the shorter
of the two must contain the true value less than 50% of the
time, meaning it cannot be a 50% confidence procedure. The
FCF leads to contradiction.

We do not need two confidence procedures to see why
the FCF is a fallacy. In the second submarine scenario, a
statistician using CP1 under the FCF would believe, on the
basis that she has computed a 50% CI, that she is 50% certain
that the true value is between the two bubbles. Considering
the fact that bubbles cannot be more than 5 meters from the
hatch, if the bubbles are more than 5 meters apart a CI com-

puted from CP1 must contain the hatch location. All CIs
from CP1 that are wider than 5 meters contain θ, with cer-
tainty. Under the FCF, the data would yield both 100% cer-
tainty and 50% certainty. Likewise, in the first scenario, the
bubbles were only 0.05 meters apart. Of confidence intervals
that are 0.05 meters wide, only 5% contain the true value (see
the supplement for an explanation). On the basis of this fact,
one could state 5% certainty that the hatch is in the interval,
and yet the FCF would lead one to also claim 50% certainty.
The FCF leads to multiple, contradictory inferences from the
same data.

The Fundamental Confidence Fallacy seems to follow di-
rectly from the definition of a confidence interval. How can
one use a confidence procedure that yields 50% CIs, yet not
be 50% certain that they contain the true value? We explore
the roots of this seeming paradox.

Relevant subsets

You may have heard the old joke about the statistician who
drowned wading across a river. He knew that the river was
one meter deep...on average. The joke works (as far as it
goes) because anyone can see that the statistician was foolish
for considering only the average depth of the river. Surely at
some point he could see that the water was dangerously deep
and yet he pressed on, presumably reassured by the sophisti-
cation of his research into the depth of the river.

The statistician in the joke failed to use relevant depth of
the river at his location to inform his actions. The Fundamen-
tal Confidence Fallacy entails a similar confusion: the con-
fusion of the average properties of a confidence procedure
with what is known about a particular confidence interval.
Consider the submarine example: if we were to know that
the width of the confidence interval from CP1 had a width of
9 meters, should we report 50% confidence in the interval,
or 100% confidence? It is a 50% CI in the sense that it was
generated from a 50% confidence procedure. If we restrict
our attention to intervals of width 9 meters, however, we find
that 100% of these intervals contain the true value.

Fisher (1959b) argued that probability statements like the
ones above were critically flawed. In particular, upon ob-
serving the data, one can see that the observed data are part
of a subset of data space (that is, possible data) for which
the CI has a different probability of containing the true value
than the average probability. In the submarine example, these
subsets can be identified by how far apart the bubbles were.
In cases like these, the subset into which the data fall is rel-
evant to judging the probability that the CI contains the true
value; hence, these special subsets of the data are called rel-
evant subsets (Buehler, 1959; Buehler & Feddersen, 1963;
Casella, 1992; Robinson, 1979).

The existence of relevant subsets indicates a failure of
properly conditioning on the data: there is the information
in data that is not being used. By not using this relevant
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information, researchers who believe the Fundamental Con-
fidence Fallacy are blinding themselves to important aspects
of the data. Someone who wanted to make good use of their
data would surely never want to use an interval that admitted
relevant subsets, because that would involve ignoring what
could be plainly seen in the data. Furthermore, if one be-
lieves the Fundamental Confidence Fallacy, the existence of
relevant subsets can cause mutually contradictory confidence
statements.

Although there is nothing about confidence procedures
themselves that prevent relevant subsets – their goal is a long-
run average performance, not to support reasonable, specific
inferences – we can create a procedure that eliminates the
relevant subsets in the submersible example. Bayesian in-
tervals called credible intervals take into account all the data
through conditioning. If we take the central 50% of the inter-
vals labeled “posterior” in Figure 2, we obtain the following
credible interval4:

x̄ ±
(
5 −
|x1 − x2|

2

)
The credible intervals for the first and second submarine res-
cue scenarios are shown in Figure 2 along the line labeled
“Cred. Int.” Notice that the Bayesian credible interval prop-
erly tracks the precision given by the data (as shown by the
posterior). Incidentally, this Bayesian credance procedure
yields another 50% confidence procedure.

It is clear that to a scientist caring primarily about what
the data at hand say about the parameter, the Bayesian in-
terval is preferable. The Bayesian interval does not ignore
the information in the data by leaving relevant subsets; it
cannot include impossible values; and its narrowness is di-
rectly proportional to the precision implied by the data. It is
derived from the Bayesian posterior distribution, which is a
unique statement about the uncertainty about the parameter,
given the data and a prior. In contrast, confidence intervals
are not unique; for any given problem, there may be several
mutually contradictory confidence procedures. Finally, the
Bayesian interval, through its use of a prior, has the interpre-
tation that the advocates of desire: that the plausibility that
the true value is within the interval is 50%.

We will explore the properties of Bayesian procedures
in the Discussion; for now, we present a scenario that will
be more familiar to psychological researchers: Normal data
with the Student’s t confidence interval.

Example 2: Student’s t interval

The submarine example was specifically tailored to show
how each of the three broad claims about confidence inter-
vals fail. Many users of CIs, however, will never encounter
such a problem. Their data is roughly normal, and so they
use Student’s t confidence interval almost exclusively. As we
will argue in the discussion, this does not make the argument

against CIs less powerful: CIs are advocated as a general in-
ferential tool, so they should work generally. If CIs only ap-
pear to make good inferences in a small number of circum-
scribed situations, their logical basis is suspect. Moreover,
the propenents of CIs often directly state or indirectly imply
that all CPs have the properties erroneously ascribed to them,
by virtue of them being CIs (see, for example, Cumming,
2014, who states that these properties “generally appl[y] to
any CI”). It turns out, however, that the contradictory con-
clusions caused by relevant subsets occur even with popular
Student’s t confidence interval.

Consider a situation in which N = 2 observations are to be
drawn from a normal distribution with unknown mean µ and
standard deviation σ. As previously discussed, the typical
50% Student’s t confidence procedure for these data is

x̄ ±
s
√

2
= x̄ ±

|x1 − x2|

2
,

or simply the minimum observation to the maximum obser-
vation. The fact that this is a 50% confidence procedure im-
plies that if we observe the data, compute the CI, and then
make the dichotomous claim “the CI contains the true value,”
– or, alternatively, “the CI does not contain the true value”
our claim will be correct 50% of the time, on average. If
relevant subsets exist, then we can find a way to improve our
accuracy above 50% correct by only using information in the
data.

Although we did not previously point it out, we have al-
ready presented the evidence of relevant subsets using Stu-
dent’s t intervals. If we re-examine Figure 1, it is apparent
that the intervals near the bottom of the figure — the short
intervals — almost never contain the true value. The longer
intervals near the top, in contrast, almost always contain the
true value. In general, the probability that a Student’s t CI
contains the true value is an increasing function of the stan-
dard error.

In order to exploit this fact, we require a way of separating
short intervals from long ones. Buehler (1959) suggested a
simple strategy for improving on the 50% accuracy of the
CI: pick a positive number — any positive number will do
— and if the sample standard deviation s is larger than this
number, claim that the interval contains the true value. If
the standard deviation is smaller the selected number, claim
that the interval excludes the true value. No matter what the
true mean, true standard deviation, and positive number one
selects, this strategy will lead to a greater than 50% success
rate for selecting intervals that do or do not contain the true
value.

How far can you raise your accuracy above the nominal
50% correct rate for the confidence interval? The accuracy

4This credible interval is formed by assuming a prior distribu-
tion that assigns equal plausibility to all possible values of θ. A
derivation is provided in the supplement to this article.
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of the strategy depends on the number you selected to sep-
arate the short intervals from the long ones. If the number
you selected is near .67σ, you can win about 3/4 of the time.
Your accuracy will drop as your criterion moves further from
this optimal value. The proof of this fact is not provided
by Buehler (1959), but we have provided it in the supple-
ment because it will help understand why the relevant subsets
arise.

Given that your accuracy depends on how well you can
guess the true population standard deviation σ, it might seem
that increasing your accuracy above 50% requires prior infor-
mation about σ. It is important to emphasize that the prob-
ability that you are correct with Buehler’s strategy is always
greater than 50%, no matter what the criterion. It is true,
however, that it is bounded at .5. If you are very, very far
off in your guess of σ, then your accuracy will be negligi-
bly larger than 50%. This boundedness has led statisticians
to call this relevant subset a semirelevant subset (Buehler,
1959; Robinson, 1979), which is typically considered less
problematic than fully relevant subsets, where the probability
is bounded away from 50%. This might cause one to suspect
that the problem is not as bad as it might first seem; certainly,
the problem with Student’s t intervals does not seem as dire
as it was with the CI in the submarine rescue example.

There are two responses to this defense of the Student’s t
confidence interval. First, as Buehler (1959) points out, in-
formation about the error in one’s measurements – whatever
these measurements might be – is precisely the kind of infor-
mation that is known to a competent experimenter, and that
would garner rough agreement across experimenters. One
does not need very specialized knowledge of σ to increase
one’s accuracy substantially above 50%. If, for instance, you
underestimate σ by a factor of 10 – a very large underesti-
mation that we suspect most experimentalists would be able
to beat – your accuracy will still about 55%. A statistician
may find this semi-relevant subset less interesting, but a sci-
entist concerned with making reasonable, accurate inferences
should find it disconcerting.

The second response to the defense against the Student’s
t CI’s semirelevant subsets is that in fact, the Student’s t CI
admits fully relevant subsets. We presented the semirelevant
subset first for conceptual clarity. Consider the following
scheme, suggested by Pierce (1973). Suppose we sample
N = 2 observations from a normal population with unknown
mean and variance, then compute a 50% Student’s t confi-
dence interval. We then simultaneously perform a two-sided
t test against the null hypothesis that µ = 0 (it is irrelevant
whether or not we are interested in the hypothesis that µ = 0).
If the p value for the t test is greater than .25, then the proba-
bility that the 50% confidence interval contains the true value
is greater than or equal to 2/3, regardless of the true mean and
standard deviation of the population. In a similar but more
dramatic fashion to Buehler’s (1959) example, the procedure

selects for large CIs by requiring a large p value.5

Pierce’s (1973) relevant subset shows that even with the
Student’s t confidence interval, one could claim with 50%
certainty that the true mean is within the CI, and simulta-
neously know that the data are part of a relevant subset for
which CIs contain the true mean with a probability of at least
2/3. Confidence procedures fail because they can provide
contradictory advice on how confident we should be that the
true value is inside the interval. Indeed, confidence proce-
dures were not designed to offer such advice. Confidence
procedures were merely designed to allow the analyst to
make certain kinds of dichotomous statements about whether
an interval contains the true value, in such a way that the
statements are true a fixed proportion of the time on aver-
age (Neyman, 1937). Expecting them to do anything else is
expecting too much.

Inference without Relevant Subsets

Relevant subsets threaten the coherence and uniqueness of
frequentist inferences with confidence intervals and can be
thought of as an example of a more general problem, the ref-
erence class problem (Venn, 1888). Frequentist probability is
defined as a long-run proportion, or the number of events that
occur with a specified property (e.g., CIs that contain the true
value) out of some reference class of events. If there are rel-
evant subsets, then there are multiple probability statements
we could make (Fisher, 1959a), depending on the reference
class we choose.

The submarine example makes the implications clear. Is
our reference class all CIs, in which case 50% of CIs will
contain the true value? Or is our reference class all CIs with
a particular width, in which case anywhere from 0% (for very
narrow CIs) to 100% (for CIs wider than 5 meters)? Either
confidence statement is valid, from a frequentist perspective,
but they contradict one another.

It seems clear that restricted reference classes are the
preferable: when possible, our inferences should be based
on the most specific descriptions of the data possible. One
might be tempted to try to solve the problem simply: if our
data are part of a known relevant subset, then we should con-
dition our inference on that fact. In Pierce’s (1973) example
above, if p > .25, then we should report a confidence of
greater than or equal to 2/3. However, this is no solution; an
observation may be a member of multiple overlapping rele-
vant subsets, and then the reference class problem rears its
ugly head again.

The desire to base inference only on the data that were ob-
served, and not on the average properties across all possible
data sets, suggests a simple solution to the relevant subset

5If, like the authors of this paper, you find this result unbeliev-
able and counterintuitive, R code is provided in the supplement to
show the result by simulation.
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problem. There is one reference class that is as specific as
possible that makes the relevant subsets problem disappear:
the data itself. Bayesian inference, for instance, makes use
of Bayes’ theorem, which states that

p(θ | y) =
p(y | θ)

p(y)
p(θ),

where y is the data and θ is a vector of unknown parameters.
The posterior p(θ | y) yields a probability distribution that
represents the uncertainty about the parameters, given the ob-
served data. The prior, p(θ), represents our uncertainty about
the parameters before observing the data. If the prior prob-
ability distribution is proper – that is, it represents a valid
probability distribution – then there can be no relevant sub-
sets (Casella, 1992; Robinson, 1979). The probability state-
ments that arise from Bayesian inference with proper priors
must be unique and consistent. Furthermore, the interpre-
tation of probability statements that arise from Bayesian in-
ference are interpretable as statements of plausibility, unlike
frequentist probability statements which have no such inter-
pretation.

Notice, though, that in order to rid ourselves the relevant
subsets that make can make reasoning from confidence inter-
vals problematic, we require a prior distribution, p(θ). As we
have argued elsewhere (Rouder, Morey, Verhagen, Province,
& Wagenmakers, submitted), reasonable inference requires
bringing information to the table. Only if we bring informa-
tion to the table, in the form of a reasonable prior distribution,
can we take all the information off the table. The belief that
one can make inferences without committing to using prior
information strikes us like a gambler who tries to win without
paying the ante. The rules of the table, unfortunately, do not
allow this.

The argument presented here – that frequentist infer-
ence, in this case with CIs – leads to incoherent infer-
ences, is but one of a number of arguments for moving
away from frequentist inferential methods. Elsewhere, we
have argued for Bayesian inference as a viable replace-
ment (de Vries & Morey, 2013; M. Lee & Wagenmakers,
2005; Morey, Rouder, Verhagen, & Wagenmakers, in press;
Rouder, Speckman, Sun, Morey, & Iverson, 2009; Rouder &
Morey, 2011; Rouder, Morey, Speckman, & Province, 2012;
Wagenmakers, 2007; Wagenmakers, M. D. Lee, Lodewyckx,
& Iverson, 2008; Wagenmakers, Wetzels, Borsboom, & van
der Maas, 2011). A full accounting of Bayesian inference is
beyond the scope of this article; for the interested reader, in
addition to the articles just mentioned we also recommend
Dienes (2011), P. M. Lee (2004), and Edwards, Lindman,
and Savage (1963).

Discussion

Using two examples, we have shown that confidence in-
tervals do not have the properties that are often claimed on

their behalf. Confidence intervals were developed to solve
a very constrained problem: how can one construct an in-
terval that contains the true mean a fixed proportion of the
time? This definition, which concerns only average perfor-
mance, does not support reasonable inference from specific
data. Claims that confidence intervals yield an impression of
precision, that the values within them are plausible, and that
the confidence coefficient can be read as a measure of cer-
tainty that the interval contains the true value, are all errors.

Good intentions underlie the advocacy of confidence in-
tervals: it would be excellent to have procedures with the
properties claimed. The FCF is driven by a desire to as-
sess the plausibility that an interval contains the true value;
the likelihood error is driven by a desire to determine which
values of the parameter are likely; and the precision error is
driven by a desire to quantify the precision of the estimates.
We support these goals (Morey et al., in press), but CIs are
not the way to achieve them.

Confidence intervals versus credible intervals

One of the misconceptions regarding the relationship be-
tween Bayesian inference and frequentist inference is that
they will lead to the same inferences. In the case where data
are normally distributed, for instance, there is a particular
prior that will lead to a confidence interval that is numeri-
cally identical to Bayesian credible intervals computed using
the Bayesian posterior (Jeffreys, 1961; Lindley, 1965). This
occurs, for instance, in the Student’s t scenario described
above.6 This might lead one to suspect that it does not matter
whether one uses confidence procedures or Bayesian proce-
dures.

If researchers were only expected to study phenomena
that were normally distributed, and researchers were only
expected to make a single inference from the data – the con-
fidence interval – then inference by confidence procedures
might seem indistinguishable from inference by Bayesian
procedures. The defense of confidence procedures by noting
that, in some restricted cases, they numerically correspond to
Bayesian procedures is actually no defense at all. One must
first choose which confidence procedure, of many, to use,
and if one is committed to the procedure that corresponds to
Bayesian inference, then this is an admission that it was the
Bayesian procedure that was desired all along. More broadly,
if psychologists are to be sophisticated statistical thinkers,
they should not be limited to a single inferential statement
under restrictive assumptions.

6The fact that the confidence interval and objective Bayesian
credible interval are numerically the same might lead one to believe
that Bayesian intervals are susceptible to relevant subsets as well.
However, the objective Bayesian interval is not a proper probability
distribution. Bayesian inference with proper priors will be immune
to relevant subsets.
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Loftus (1993) argued in the context of recommending
abandoning significance testing, that limiting ourselves to
common designs and assumptions (e.g., normal populations)
severely limits the inferences we can make. To prevent ar-
bitrary limitations on statistical inferences, if Bayesian inter-
pretations are desired, Bayesian inference should be applied
in its full generality – not just when it numerically corre-
sponds with frequentist inference. The correspondence be-
tween confidence procedures and Bayesian procedures is not
a general rule. In some cases, for instance with count data,
there are many different confidence intervals (among others
the Wald, the Agresti-Coull, the Clopper-Pearson, the arc-
sine, and the logit; see Brown, Cai, & DasGupta, 2001, for a
review). These confidence procedures all yield different in-
ferences among themselves, not to mention differences with
Bayesian credible intervals.

In some cases confidence procedures do not even allow
an inference. The end-points of a confidence interval are al-
ways set by the data. Suppose, however, we are interested
in determining the plausibility that a parameter is in a par-
ticular range; for instance, in the United States, it is against
the law to execute criminals who are intellectually disabled.
The criterion used for intellectual disability in the US state of
Florida is having an IQ lower than 70. Since IQ is measured
with error, one might ask what confidence we have that a
particular criminal’s IQ is between 0 and 70. In this case,
the interval is no longer a function of the sample. The long-
run probability that the true value is inside a fixed interval
is unknown and is either 0 or 1, and hence no CP can be
constructed, even though such information may be critically
important to a researcher, policy maker, or criminal defen-
dant.

Even in seemingly simple cases where a fixed interval is
nested inside a CI, or vice versa, one cannot draw conclu-
sions about the confidence of a fixed interval. One might
assume that an interval nested within a CI must have lower
confidence than the CI; however, in the second submersible
rescue scenario, a 100% confidence interval (all the possi-
ble values of θ) was nested within both CI1 and CI2, which
were 50% CIs. Likewise, one might believe that if a CI is
nested within a fixed interval, then the fixed interval must
have greater confidence than the interval. In the first sub-
mersible rescue scenario, intervals within which the 50% CI1
were nested had low plausibility, due to their narrowness. In
contrast, Bayesian procedures offer the ability to compute
the plausibility of any given range of values, and are guaran-
teed to yield statements that are mutually coherent. Because
all inferences must be made through Bayes theorem, infer-
ences must remain internally consistent (c.f. Stone & Dawid,
1972).

Finally, we believe that in science, the meaning of our
inferences are important. Bayesian credible intervals sup-
port an interpretation of probability in terms of plausibility,

thanks to the explicit use of a prior. Confidence intervals,
on the other hand, are based on a philosophy that does not
allow inferences about plausibility, but do not require a prior.
Using confidence intervals as if they were credible intervals
is an attempt to smuggle Bayesian meaning into frequentist
statistics, without proper consideration of a prior. Priors have
consequences, and must be carefully considered. There is no
free lunch; to get reasonable inference, one must pay a price
(Rouder, Morey, Verhagen, et al., submitted).

Conclusion

We have suggested that confidence intervals do not sup-
port the inferences that their advocates believe they do. The
problems with confidence intervals – particularly the fact that
they admit can relevant subsets – shows a fatal flaw with their
logic. They cannot be used to draw reasonable inferences.
We recommend that their use be abandoned.

We therefore take stock of what we would be giving up, if
we were to give up the use of confidence procedures. Aban-
doning the use of confidence procedures means abandoning
a method that merely allows us to create intervals that con-
tain the true value with a fixed long-run probability. We sus-
pect that if researchers understand that this is the only thing
they will be losing, they will not consider it a great loss. By
adopting Bayesian inference, they will gain a way of making
principled statements about precision and plausibility. Ulti-
mately, this is exactly what the advocates of CIs have wanted
all along.
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