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The Firth bias correction, penalization, and weakly informative priors: 

A case for log-F priors in logistic and related regressions 

 

 

 

Abstract. Penalization is a very general method encompassing the Firth bias correction as a 

special case. This correction has been programmed in major software packages, albeit with small 

differences among implementations and the results they provide. We consider some questions 

that arise when considering alternative penalties, and note some serious interpretation problems 

for the Firth penalty arising from the underlying Jeffreys prior, as well as contextual objections 

to alternative priors based on t distributions. Taking simplicity of implementation and 

interpretation as our chief criteria, we propose that the log-F(1,1) prior provides a better default 

penalty than other proposals. Penalization based on more general log-F priors is trivial to 

implement and facilitates sensitivity analyses of penalty strength the number of added 

observations (prior degrees of freedom) are varied. 

 

Keywords: Bias correction, Firth correction, Jeffreys prior, logistic regression, maximum 

likelihood, penalized likelihood, sparse data  
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1. INTRODUCTION 

A very useful method of dealing with sparse data and separation in logistic, Poisson, and 

Cox regression is the Firth bias correction [1,2]. Thanks to the work of Heinze and colleagues, 

this method for has been adopted into major software packages including SAS [3-5], R [6-9], and 

Stata [10]. Although the correction is often described as penalized likelihood estimation, 

penalization is a general method encompassing the Firth correction as a special case. This view 

has led us to a number of conclusions regarding the appropriateness of the correction and its 

competitors, which we present here. 

We begin the present paper by describing the Firth correction in the simplest case, where 

its relation to classical bias corrections and simple prior distributions is transparent. We then 

consider proposals for default and “weakly informative” priors based on independent normal, 

Cauchy, and log-F distributions, and illustrate them in a clinically well-understood example. 

That example shows how the correlations in the Jeffreys prior underlying the Firth penalty can 

lead to artifacts such as estimates lying outside the range of the prior median and the maximum-

likelihood estimate (MLE). We argue that, for transparency, computational simplicity, and 

reasonableness for logistic regression, a log-F(1,1) prior may provide a better reference point 

than the Jeffreys prior or those based on t distributions. Regardless of the prior shape chosen, 

however, we advise that a properly shifted prior or (more conveniently) no prior be used for 

intercepts or coefficients that could reasonably have extreme values, and that stronger penalties 

be used to control error in multiple inference, goals that cannot be accomplished with current 

implementations of the Firth correction.  Finally, we describe a small discrepancy among 

implementations and computation of standard errors for the Firth correction.  

 

2.  THE FIRTH PENALTY AND THE JEFFREYS PRIOR IN LOGISTIC REGRESSION  

 Consider a logistic regression model π(x) = ex′β/(1+ ex′β) for the dependence of a 

Bernoulli outcome parameter π on a covariate vector x; x may include a constant, in which case 

the coefficient vector β includes an intercept. Let X be a design matrix with typical row x, y the 

corresponding vector of observed binomial counts y with denominators n in n, and let ℓ(β) 

denote the model loglikelihood  y′(Xβ) – n′ln(1+ exp(Xβ)). The observed (and expected) 

information matrix I(β) is then  −ℓ′′(β) = X′WX, the negative Hessian of ℓ(β), where W is 
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diagonal with diagonal elements nex′β/(1+ ex′β)2. The Firth correction [1] estimates β as the 

maximum of the penalized loglikelihood   

ℓ*(β) = ℓ(β)+ ½ln|I(β)| 

and the penalized information I*(β) is the negative Hessian −ℓ*′′(β). We will omit the arguments 

x and β from subsequent notation.  

The penalty term ½ln|I| is the log of a Jeffreys prior density [1, sec. 3.1], and thus the 

maximizer b of ℓ* is the posterior mode given this prior. There is a large theoretical literature on 

this prior; we note only points relevant here. In logistic regression, this prior is proper and 

unimodal symmetric about β = 0, with heavier tails than multivariate normal and lighter tails 

than multivariate t-distributions [11]. The prior is extremely weak and often described as a 

noninformative or reference prior for “objective Bayes” analyses [12]. Its frequentist rationale 

however is that it removes O(n−1) bias from b, and it prevents infinite estimates arising from 

separation problems [1-5]. Nonetheless, as Firth notes [1, sec. 7], it does not minimize expected 

error or loss. It thus may be unsurprising that, as we will illustrate below, in applications to 

sparse data it can produce implausible estimates when compared to possibly stronger but still 

contextually weak penalties, such as those based on generalized-conjugate (including log-F) 

priors [13-15], normal priors [15,16], or information criteria [17-20].  

To gauge the information in the Firth penalty, consider a matched-pair case-control study 

observing n pairs discordant on an indicator x in which y pairs have x=1 for the case. Following 

standard theory [21], the conditional logistic regression for data can be analyzed as a single 

binomial observation of y successes on n trials with success probability eβ/(1+eβ), an intercept-

only logistic model; the odds ratio of interest thus equals the odds eβ that in a given discordant 

pair the case is exposed. The resulting loglikelihood is ℓ = yβ − nln(1+eβ), which has I = 

neβ/(1+eβ)2 and is maximized at b = ln(y/(n−y)), the MLE, which is eb = 4 when y=8, n=10. This 

MLE is the posterior mode under an improper log-F(0,0) (uniform) prior for β [14].  

The Firth penalty for the pair model is ln|neβ/(1+eβ)2|½ = ln(n)/2 + β/2 − ln(1+eβ), 

corresponding (up to a constant) to the log of a Jeffreys prior density eβ/2/(1+eβ), which is a log-

F(1,1) (Haldane) density for β. This prior produces a 95% prior interval for the odds ratio eβ of 

(1/648,648), which extends orders of magnitude beyond effects normally seen in health and 

social-science studies that require logistic-regression analyses. The penalized loglikelihood is ℓ* 

= (y+½)β−(n+1)ln(1+eβ), which equals the unpenalized loglikelihood obtained by augmenting y 
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by ½ and n by 1. The penalized information is I* = (n+1)eβ/(1+eβ)2 and the maximizer b of ℓ* is b 

= ln((y+½)/(n−y+½)), the same estimate obtained from the classical Haldane bias correction for 

the empirical logit [1, p. 31]; this produces eb = 3.4 when y=8, n=10.  

More generally, if X is a matrix of mutually exclusive (orthogonal) indicators, I is 

diagonal with diagonal elements neβ/(1+eβ)2 where β is an element of β. Consequently, |I|½ and 

thus the Jeffreys density becomes a product of log-F(1,1) densities. As illustrated below, 

however, the Jeffreys prior and independence priors can give quite divergent results, since most 

X induce correlations in the Jeffreys prior.   

 

3. HOW DISPERSED SHOULD A REFERENCE PENALTY BE? 

In cases in which there may be doubt about the appropriate degree of penalization, the 

Firth correction can provide a reference point arguably more appropriate than the MLE itself, 

given its reduced bias and the fact that the resulting estimates remain finite even with complete 

separation [1-5]. This reference interpretation view is mirrored by its derivation from the Jeffreys 

prior [1,12], which is invariant under reparameterization. As discussed below, however, it turns 

out that this invariance comes at a high cost of interpretability, which has inspired a search for 

better default priors.   

There have been many other proposals for weak priors or penalties, including several 

expressly derived to deal with data sparsity. A review would far surpass our present scope, since 

most require software beyond basic logistic regression. The strongest prior we have seen 

proposed as “weakly informative” is a normal(0,1.38) prior, where the 1.38 is derived from a 

95% prior interval for eβ of (1/10,10) [22]; as illustrated below, however, this prior is too strong 

to be considered weakly informative in general.  A common approach is thus to use a normal 

prior with a large variance, which must face the arbitrariness of variance choice; also, a central-

limit rationale for the normal shape seems inoperative when little or no background information 

is used to specify the prior. Other common approaches include t-distributions with few degrees 

of freedom and expanded scale, which have heavier tails than Jeffreys or log-F(1,1) priors [11]; 

these approaches face arbitrariness in choice of degrees of freedom and scale, however.  

In an article that has attracted much attention, Gelman et al. [23] proposed Cauchy (t1 = t-

distribution with one degree of freedom) priors scaled up by a factor of 2.5 as defaults for 

logistic coefficients (other than the intercept), and described how to add this 2.5t1 distribution as 
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a penalty in standard likelihood-maximization algorithms. Unfortunately, this prior has several 

disadvantages relative to the Firth correction: it has no frequentist justification as a bias 

correction, and in fact is rather arbitrary; although available in R [23], it is not yet (to our 

knowledge) available as a command in major commercial software; and, unlike normal or log-F 

priors [13-15], t priors cannot be implemented in ordinary maximum-likelihood packages by 

appending simple pseudo-data.  

For comparison, Gelman et al. [23, fig. 1] also consider the prior density eβ/2/(1+eβ) for β 

in an intercept-only logistic model, which again is the log-F(1,1) and Jeffreys density, and argue 

in favor of the 2.5t1 distribution because it provides much higher probabilities of extreme values. 

There are however both Bayesian and frequentist reasons that this increased dispersion argues 

against the 2.5t1 distribution, in favor of lighter-tailed but still highly dispersed distributions. 

 Consider first effects known to be huge, e.g., with odds ratios above 100 or below 1/100. 

Such effects would ordinarily not be good candidates for study or control by logistic regression, 

precisely because they would likely lead to very small or zero event counts in some categories 

and consequent failure of asymptotics, as well as severe misspecification bias. Instead, tight 

restriction or matching would be advisable to control such effects adequately; and if such effects 

were modeled, a zero-centered prior would be inappropriate.  

Now suppose instead that huge odds ratios were so implausible that estimates in these 

extreme ranges would be taken as signaling large errors or biases rather than real effects, a 

situation which typifies most covariates when viewed in context. Then at least some shrinkage 

would be advisable as a precautionary measure. Degree of shrinkage is determined by the prior 

dispersion. In this regard, a log-F(1,1) prior (again, the Jeffreys prior in the intercept-only case) 

already allows substantial probability for huge odds ratios, producing 12.7% or about 1 chance in 

8 of eβ being below 1/100 or above 100 (|β|>4.6), again with a 95% prior interval of (1/648,648). 

The 2.5t1 prior increases the probability of eβ<1/100 or eβ >100 to 32%, or about 1 chance in 3, 

with a 95% prior interval that extends into the trillions. We would expect that the consequent 

undershrinkage of such huge or infinite MLEs by the 2.5t1 penalty would leave those estimates 

further away from zero compared to estimates from the Firth or log- F(1,1) penalties, as we have 

observed in several examples with infinite MLEs (not shown). In the less extreme example 

below, however, the Firth estimate is the largest, exceeding the MLE.  
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Gelman et al. do point out a serious practical defect of the multivariate Jeffreys prior and 

hence the Firth penalty: It is not clear in general how the Jeffreys prior translates into prior 

probabilities for odds ratios; and, unlike with independent priors, under a Jeffreys prior the 

marginal prior for a given β can change in opaque ways as model covariates are added or deleted. 

Addition of higher-order terms (products, powers, etc.) increases this problem since those terms 

can be highly correlated with one another and their main effects. Finally, by extension of the 

hierarchy principle, it is advisable to use stronger penalties for higher-order terms than for main 

effects [18]; implementing such a directive is difficult starting from the Firth penalty, yet is 

simple for other methods.  

As Gelman et al. recognize, shrinking a logistic intercept toward zero is usually 

inadvisable, since the intercept is rarely expected to be in a neighborhood of zero. This issue can 

be addressed by using an intercept prior much more dispersed than other priors. Gelman et al. 

propose using a 10t1 intercept prior, which is negligibly different from no prior at all. In data 

augmentation, the intercept prior can be removed entirely by omitting the prior record for the 

intercept [15]. A corresponding modification could be made to the Firth penalty, but (unlike the t 

and log-F cases) would alter the prior distribution for remaining coefficients, and such an option 

is not available in packaged software. Another drawback of the Firth penalty is that it has not 

been implemented in all major packages (e.g., it is not listed in SPSS at this time), whereas 

normal and log-F priors extend easily to all packages via data augmentation [14,15,24]. 

 Turning to log-F priors, the choice of degrees of freedom and scale may seem arbitrary, 

but a log-F(1,1) prior for β without rescaling has a natural interpretation as adding exactly 1 null 

observation regarding β; as discussed below, this interpretation generalizes easily. The 

interpretational and computational simplicity of the log-F(1,1) prior compared to other 

proposals, as well as the above considerations, lead us to prefer the log-F(1,1) distribution as a 

suitable default penalty source (omitting the penalty for intercepts). They also lead us to 

recommend extensions of log-F penalties for settings in which more contextual information is 

available, as discussed next.  

 

4. HOW STRONG SHOULD A WEAK PENALTY BE? 

Extremely weak penalties such as those described above can be said to sacrifice precision 

in the neighborhood of zero in exchange for limiting bias where unbiasedness is contextually 
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unimportant, in regions implausibly far from zero. When this tradeoff seems unacceptable, more 

precise penalties are easily implemented in any logistic-regression package by translating each 

desired coefficient penalty into a prior-data record [13-16]. To illustrate, let β be an element of β, 

with x the corresponding element of x. Because a log-F(m,m) density is proportional to 

eβm/2/(1+eβ)m, penalization of β by a log-F(m,m) prior can be done by adding a data record with 

m/2 successes on m trials, and zero for all covariates (including the constant) except x, which is 

set to 1 [14,15,24]; it thus corresponds to adding a null binomial observation of size m as the 

prior for β. The log-F distribution has lighter tails than a t-distribution but heavier tails than the 

normal [25]. The prior degrees of freedom m in a log-F prior is exactly the number of 

observations added by the prior, while the corresponding penalty component mβ/2 − mln(1+eβ) 

adds information m/4; the total added observations is the total of the m across coefficients, and 

may be compared to the number of actual observations to gauge the relative strength of the prior.  

Shrinkage increases rapidly with m, both from decreased dispersion and from lightening 

of tails toward the normal, with the prior becoming practically normal(0,4/(m−1)) for m>10 [15]. 

To choose m based on desired prior intervals for eβ, one can refer to percentiles from a table or 

function for F distributions. Asymmetric penalties can be created by assigning unequal fractions 

f of m to the degrees of freedom to create log-F(fm,(1−f)m) priors, and location and scale 

parameters can be added to produce shrinkage toward nonzero values and to produce normal 

priors [13,14,26 appendix], but we will focus on symmetric log-F shrinkage of β toward zero. 

The penalty strength m can be varied across model parameters as deemed appropriate, 

and the penalty (prior record) can be omitted for any coefficient (partial penalization), which 

corresponds to using m=0. To minimize bias from shrinkage toward zero, we omit penalties for 

coefficients of known strong predictors, intercepts, and other terms which are assuredly far from 

zero. For less clearly nonzero coefficients, however, priors from larger values of m may be 

considered weakly informative. For example, a log-F(2,2) prior for β equals the logistic prior, 

and corresponds to a uniform prior on π = eβ/(1+eβ), which has a long history as a weakly 

informative prior for a binomial parameter. It yields a 95% prior interval of (1/39, 39) for the 

odds ratio eβ, still nearly an order of magnitude greater than typical target effects; in the 

matched-pair example it produces b = ln((y+1)/(n−y+1)), with eb = 3 when y=8, n=10.  

Strong penalties sacrifice calibration in contextually extreme regions of the parameter 

space in return for greater accuracy in likely regions. Typical multiple-inference problems 
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(“fishing expeditions”) in epidemiology have good contextual reasons for using far stronger 

penalties than those from reference priors. For example, a log-F(3.9,3.9) prior for β would give 

95% probability to eβ being between 1/10 and 10, while a normal(0,½) or a log-F(9,9)  prior for β 

would give 95% probability to eβ being between ¼ and 4 [15]; yet these priors would still be 

considered fairly weak if most odds ratios are expected to fall between ½ and 2, as in [27], or if β 

was the coefficient of a higher-order term as in [26]. Strong penalties or priors may also have 

frequentist as well as Bayesian rationales given goals of total mean-squared error reduction and 

improved generalizability of risk estimates [17-20], as typified by explorations of higher-order 

effects such as product terms (“interactions”). In particular, the number of 2-way products 

among K covariates, K(K−1)/2, increases quadratically with K, greatly aggravating sparsity 

problems unless very strong penalties are applied to these terms.   

 

5. A CASE STUDY  

Sullivan & Greenland [15] contrasted results from logistic regressions of neonatal death 

on 14 risk factors, using priors ranging from highly informative to very weak. The data were 

very sparse, with only 17 deaths among 2,992 births. See [15] for detailed summaries, source 

citations, and full regression analyses including results from Markov-Chain Monte-Carlo 

(MCMC) as well as penalized likelihood; online supplements provide the data, along with SAS 

code for penalized likelihood via data augmentation in ordinary logistic, conditional logistic, 

Poisson, and proportional-hazards models with normal and log-F priors. Of interest here is that 

several coefficient MLEs were badly inflated. We focus on and present additional results for 

hydramnios (excess amniotic fluid), which occurred in 10 pregnancies including one death. 

The unadjusted hydramnios odds ratio is (1/9)/(16/2,966) = 21 with mid-P limits of 0.88, 

136 from Stata [10], quite imprecise but in accord with clinical expectations of about a 10-fold 

increase in death risk from the condition. This estimate is the MLE obtained from a univariate 

regression. Applying the Firth correction to this regression is equivalent to adding ½ to each 

count, producing an odds ratio of (1.5/9.5)/(16.5/2,982.5) = 28; this is an example of “Bayesian 

noncollapsibility” in that the posterior mode of ln(28) is outside the range of the prior mode of 0 

and the MLE of ln(21) [28]. In contrast, using a ln-F(1,1) prior for the log odds ratio (with or 

without the same prior for the intercept) produces an odds ratio of 11. 
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Now let β be the hydramnios-indicator coefficient and b an estimate of β from the logistic 

regression with all 14 covariates and the intercept; the adjusted odds ratio for hydramnios is then 

eβ with estimate eb. Table 1 summarizes the eb and 95% prior, Wald (log-symmetric), and 

profile-likelihood limits (PLLs) for eβ obtained from different penalties and priors, based on 

maximization of the indicated penalized likelihood. The MLE eb of eβ was 60, about six times the 

clinical expectations and quite inflated relative to the unadjusted MLE. The 95% Wald limits 

were 5.7, 635, compared to PLLs of 2.8, 478; this discrepancy reflects the severe skewness of the 

likelihood. Results from the Jeffreys prior using the SAS FIRTH option appeared even more 

inflated yet more precise, giving eb = 68 (Wald limits 9.2, 505 from Stata and 9.1, 510 from 

SAS; PLLs 6.1, 421); although the total distance ||b|| = (b ′b)½ of the coefficient vector b to the 

origin was reduced (MLE ||b|| = 8.82, Firth ||b|| = 8.63), 7 other point estimates also moved away 

from zero relative to their MLEs. Direct coefficient bias correction [29] gave estimates very 

close to the Firth correction.  

In contrast, independent log-F(0.62,0.62) priors for all coefficients including the intercept 

(with 0.62 chosen to match the estimated degrees of freedom of Firth penalization in this 

example, trace(I*−1I) = 14.04 [18,19]) produced eb = 34 (Wald limits 2.6, 460; PLLs 1.2, 303), 

more consistent with clinical expectations, with all estimates moving toward zero. Similarly, 

independent 2.5t1 priors for all coefficients and 10t1 for the intercept using bayesglm in the arm 

package in R [30] produced eb = 30 (Wald limits 2.4, 356, PLLs not given by bayesglm), while 

independent log-F(1,1) priors for all coefficients including the intercept produced eb = 23 (Wald 

limits 1.4, 379; PLLs 0.76, 226), again with all estimates moving toward zero in both cases. The 

contrast illustrates how results from Jeffreys and independence priors can diverge; we found no 

clear clinical interpretation of the Jeffreys prior or the divergence in current Firth-penalization 

software [3-10] (which does not compute Jeffreys prior limits).  

The intercept is the log odds of death among those with no risk factor (all covariates 

zero), and must be very negative given that the proportion dying in the entire cohort is only 

17/2992 = 0.006. Thus, following our own advice to avoid shrinking the intercept toward zero, 

we now exclude its prior (or equivalently, assign it a log-F(0,0) prior). This has little impact on 

the results: keeping log-F(1,1) priors for the other coefficients produces eb = 24 (PLLs 0.78, 

243). Using instead log-F(2,2) priors produces eb = 8.1 (PLLs 0.44, 117), again consistent with 

clinical expectations. However, using normal(0,1.38) priors [22] produces eb = 3.4 (PLLs 0.37, 
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27), while using log-F(9,9) priors produces eb = 1.5 (PLLs 0.41, 6.3), which appear overshrunk 

relative to these expectations. This overshrinkage is unsurprising given that both priors are 

inconsistent with the expectations (e.g., their 95th percentiles are 6.9 and 3.2, respectively), and 

illustrates the hazards of shrinking toward zero when a strong relation is expected. Shifting the 

log-F(9,9) priors upward to reflect expectations, with prior medians of 4 for the hydramnios odds 

ratio eβ and 1-4 for other covariate odds ratios, produces instead eb = 5.8 (PLLs 1.6,22). Finally, 

using the same prior medians with variance ½ normal priors for the coefficients produced a 

posterior mode of eb = 6.1 (PLLs 1.6, 23) from data augmentation and a posterior geometric 

mean of 6.0 (2.5th and 97.5th percentiles 1.6, 22) from MCMC [15]. 

 

6. UNPENALIZED OR PENALIZED INFORMATION? 

           The standard errors for Firth-corrected logistic regression produced by Stata [10] are 

slightly smaller than those produced by SAS [3] and R [6,8], as illustrated by the Firth intervals 

in Table 1. The explanation appears to be that (following Firth [1, sec. 5] and Heinze and 

colleagues [3,4]) SAS and R [6,8] as well as Statistica [31] use the unpenalized inverse 

information I−1 in Newton-Raphson iterations to maximize ℓ*, taking the final I−1 as the 

estimated covariance matrix. In contrast, Stata [10] uses the penalized inverse information I*−1; 

the smaller standard errors follow from the fact that I* is augmented over I by the negative 

Hessian of ½ln|I|. The difference is generally minor [2,32]; for example, recall that in the 

matched-pair example, I = neβ/(1+eβ)2 whereas I* = (n+1)eβ/(1+eβ)2, leading to a variance ratio of 

(n+1)/n and an estimated degrees of freedom of n/(n+1).  

Nonetheless, in our experience, use of I* rather than I usually speeds convergence. These 

observations are unsurprising given that −I* is the gradient matrix of the score vector ℓ*′ and thus 

(unlike I) follows from the Gauss-Newton algorithm. Furthermore, in data augmentation [13], 

I*−1 arises as a first-order posterior covariance-matrix approximation. These facts do not however 

dictate that standard errors computed from I* are superior, since both I−1 and I*−1 are only 

approximate covariance matrices. In particular, although I*is the correct curvature matrix for ℓ*, 

the covariance estimate I*−1 suffers from higher-order bias. Fortunately, the choice is rendered 

moot by computing intervals from the profile penalized loglikelihood, as usually recommended 

when n is not large or ℓ* is not nearly quadratic [3,4,13-16], or by switching to a log-F prior. 
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7. DISCUSSION 

Although we have focused on judging penalty strength from contextual consideration of 

the corresponding prior distribution, strength can instead (or also) be determined by cross-

validation or other data-based methods [17-20], thus keeping the analysis within the frequentist 

empirical-Bayes sphere. Both Bayesian and empirical-Bayes analyses may be conducted and 

contrasted, an activity we encourage to provide a higher level of cross-validation, and to build 

more understanding of when these different approaches tend to agree or conflict in substance.  

We have argued that, in health and social-science contexts in which these methods are 

reasonable approaches and penalization is desired, both the Firth correction and t-distribution 

priors are subject to serious objections. Based on simplicity of interpretation and computation, 

we propose that the log-F(1,1) prior provides a better default penalty and reference prior, 

although we advise that a properly shifted prior or (more conveniently) no prior be used when for 

intercepts or for coefficients that could reasonably be enormous. We do not however suggest 

ignoring MLEs, for at the very least they serve as diagnostics: when they diverge or appear 

absurdly inflated, we are alerted to the fact that subsequent estimates will be profoundly sensitive 

to the penalty chosen to address the problem. 

There are hazards associated with use of any prior or penalty, including default ones. We 

advise that close attention be paid to whether prior dependencies or independencies are 

reasonable for the model parameterization. Some independencies may turn out to be absurd when 

considered in context. For example, if β1 and β2 represent rates (or log rates or logits) of 

classification error or disease in two exposure categories indicated by x1 and x2, severe prior 

dependence is only to be expected since the contextual reference state is the null hypothesis of 

equality (β1=β2, complete dependence) [26, 28]. In such cases, contextually sensible options are 

to either include a correlation hyperparameter in the joint prior (which can be quite difficult to 

specify) [13], or else recode covariates to obtain a parameterization for which an independence 

prior might be reasonable, such as  c = x1 + x2 = 1 and x2, whose coefficients are β1 and β2
*= 

β2−β1 [26,28]. 

Because eβ represents the odds ratio associated with a unit change in the corresponding 

covariate, we strongly advise that quantitative covariates be scaled in units or spans that are 

contextually meaningful, important, and generalizable (recognizable and transportable). This 

means avoiding standard deviations and other study-dependent scales (unlike Gelman et al. [23]), 
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and using instead simple multiples of SI units within the range of the data. For example, blood 

pressure could be scaled in cm, adult ages in decades. Use of SI units allows checking of prior 

and posterior percentiles for the odds ratios eβ against contextual information [24], and aids 

interpretability and comparability of estimates eb across studies [33]. We also advise centering 

quantitative covariates so that 0 is a meaningful reference value within the range of the data, 

which allows sensible interpretation of the intercept as the logit of risk when all covariates are 

zero; similarly, when a product term x1x2 is entered, it allows sensible interpretation the main-

effect coefficient β1 for x1 as a log-odds ratio when x2 (and hence x1x2) is zero. Nonetheless, we 

caution that if the outcome is common (π > 0.10) at some covariate levels, odds ratios become 

difficult to interpret correctly because they no longer approximate risk ratios; thus it will be 

better to compare fitted probabilities (risks) directly than to use the eb as effect estimates [34].  

As a practical matter we have recommended using no intercept prior because the 

intercept is a direct function of which covariates are included and their coding. In particular, the 

intercept can be extremely sensitive to how covariates are centered (is age in years since birth? or 

recentered to its study-specific mean? or entered instead as category indicators?) and ordered 

(are males=1, females=0? or females=1, males=0?). It is also extremely sensitive to the sampling 

design: studies may select low-risk or high-risk groups, or highly exposed groups, completely 

distorting the intercept relative to vital-statistics data or previous studies that might inform priors. 

Worse, the intercept is cut off from background information by outcome-dependent (case-control 

or choice-based) sampling, which makes the intercept mainly a function of the chosen outcome-

sampling ratios. These dependencies render reliance on past intercept estimates dubious at best. 

The distortion capacity of the intercept prior will be limited if it is weak, but again (and unlike 

with most coefficients) the intercept is usually unlikely to be near zero. Thus, simply dropping 

the intercept prior seems to us the safest default.  

Similar coding sensitivities will arise in main-effect coefficients when their covariates 

appear in product terms. Nonetheless, sensible centering may render shrinkage of such 

coefficients toward zero reasonable, which along with improbability of large values may justify 

use of weak default priors for them.   
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 Table 1. Penalized-likelihood estimates eb of the adjusted odds ratio eβ for hydramnios, using 
different penalties (priors) in a logistic regression of neonatal death on 14 risk factors in a 
cohort of 2992 births with 17 deaths (see [15] for further model details and results for other 
coefficients). 
  

Priors for β Fitting 
method 

Model 
df§ 

Prior median for  
coefficient antilogs eβ  
(95% prior interval) 

OR estimate eb 

(95% Wald & profile-
likelihood intervals) 

     
log-F(0,0) 
 

ML 15 undefined  
 

60 
(5.7, 635),(2.8, 478) 

Jeffreys*  Firth penalty 14.0 1 
(not given by programs) 

68 
(9.2, 505)**,(6.1, 421) 

log-F(0.62,0.62)* DAP 14.0 (4.46×10−5,2.24×105) 34 
(2.6, 460),(1.2, 303) 

2.5t1 (10t1 for 
intercept) [23]*† 

as per arm 
[29] 

13.4 1  
(1.60×10−14,6.25×1013) 

30 
(2.4, 356),(not given) 

log-F(1,1)* DAP 13.5 1 
(1/648,648) 

23 
(1.4, 379),(0.76, 226) 

log-F(1,1) 
 

DAP 13.5 1 
(1/648,648) 

24 
(1.4, 407),(0.78, 243) 

log-F(2,2) 
 

DAP 12.0 1 
(1/39,39) 

8.1 
(0.36, 179),(0.44, 117) 

Normal(0,1.38) 
 

DAP with 
scale = 20  

10.4 1 
(1/10,10) 

3.4 
(0.40, 30),(0.37, 26) 

log-F(9,9) DAP 7.2 1 
(1/4,4) 

1.5 
(0.41, 5.7),(0.41, 6.3) 

log-F(9,9) 
centered at ln(4)‡ 

DAP 7.7 4 
(1,16) 

5.8 
(1.6, 21),(1.6, 22) 

Normal(ln(4),½)‡ DAP with 
scale = 20 

8.0 4 
(1,16) 

6.1 
(1.6, 23),(1.6, 23) 

Normal(ln(4),½)‡ MCMC Not 
given 

4 
(1,16) 

6.0 
(1.6, 22)‡‡ 

 ML: maximum likelihood; DAP: data augmentation prior [13-15]; MCMC: Markov-chain 
Monte Carlo.  
*Intercept included in prior; all other fits used no intercept prior.  
†2.5t1 = Cauchy distributions with center 0 and scale 2.5 for binary predictors, 2.5/(2×SD) for 
quantitative variables with standard deviation SD, 10 for intercept,. 
‡Prior medians of 1-4 are used for other covariate odds ratios.  
§No. model parameters for ML; estimated degrees of freedom = trace(I*−1I) otherwise [18,19]. 
**from Stata; (9.1, 510) from SAS. 
‡‡Simulated posterior geometric mean and 2.5th, 97.5th percentiles from 100,000 samples using 
BAYES statement in SAS GENMOD [15].  

 

 


