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What is Stan?

• Stan is an imperative probabilistic programming language

– cf., BUGS: declarative; Church: functional; Figaro: object-oriented

• Stan program

– declares variables

– codes log posterior (penalized likelihood)

• Stan inference

– MCMC for full Bayesian inference

– MLE for point estimation

• Stan is open source (BSD core C++, GPLv3 interfaces)

hosted on GitHub; uses Eigen matrix lib, Boost C++ lib, googletest
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Who’s Using Stan?

• 750+ registrations for mailing list across the physical, biomed-
ical, and social sciences, plus engineering, finance and
marketing

• Subjects of Papers on Google Scholar in the sciences
clinical drug trials, general computational statistics, entomology, opthal-

mology, neurology, sociology and population dynamics, genomics, agri-

culture, psycholinguistics, molecular biology, population dynamics, ma-

terials engineering, botany, astrophysics, oceanography, election predic-

tion, fisheries, cancer biology, public health and epidemiology, popula-

tion ecology, collaborative filtering for recommender systems, climatol-

ogy, educational testing, natural language processing
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Books and Model Sets

• 400+ page core language tutorial manual

• separate installation, getting started, interface manuals
(RStan, PyStan, CmdStan)

• BUGS and JAGS examples (all 3 volumes),

• Gelman and Hill, Data Analysis Using Regression and Mul-
tilevel/Hierarchical Models

• Wagenmakers and Lee, Bayesian Cognitive Modeling

• two other books in progress
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Scaling and Evaluation

• Types of scaling

– more data

– more parameters

– more complex models

• for MCMC, measure (as function of scaling)

– time to convergence

– time per effective sample at mixing

– memory usage
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Stan vs. BUGS / JAGS

• JAGS is the former state-of-the-art, black-box MCMC method
(Gibbs with slice sampling; chokes w. high posterior correlation)

• Stan (2.0) vs. BUGS on scaling IRT model

– Stan about 10 times faster

– Stan memory and time scales linearly

– linearly scales with number of question answers
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• Stan can handle problems that choke BUGS and JAGS
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Part I

Stan Front End
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Platforms and Interfaces

• Platforms
Linux, Mac OS X, Windows

• C++ API
portable, standards compliant (C++03 now, moving to C++11)

• Interfaces
– CmdStan: Command-line or shell interface (direct executable)

– RStan: R interface (Rcpp in memory)

– PyStan: Python interface (Cython in memory)

– MStan∗: MATLAB interface (lightweight external process)

– JuliaStan∗: Julia interface (lightweight external process)

∗ User contributed
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Example: Bernoulli

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

y ~ bernoulli(theta);
}

notes: theta uniform on [0,1], y vectorized
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RStan Execution
> N <- 5; y <- c(0,1,1,0,0);
> fit <- stan("bernoulli.stan", data = c("N", "y"));
> print(fit, digits=2)

Inference for Stan model: bernoulli.
4 chains, each with iter=2000; warmup=1000; thin=1;

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
theta 0.43 0.01 0.18 0.11 0.42 0.78 1229 1
lp__ -5.33 0.02 0.80 -7.46 -5.04 -4.78 1201 1

> hist( extract(fit)$theta )

Histogram of extract(fit)$theta

extract(fit)$theta
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Basic Program Blocks

• data (once)

– content: declare data types, sizes, and constraints

– execute: read from data source, validate constraints

• parameters (every log prob eval)

– content: declare parameter types, sizes, and constraints

– execute: transform to constrained, Jacobian

• model (every log prob eval)

– content: statements definining posterior density

– execute: execute statements
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Derived Variable Blocks

• transformed data (once after data)

– content: declare and define transformed data variables

– execute: execute definition statements, validate constraints

• transformed parameters (every log prob eval)

– content: declare and define transformed parameter vars

– execute: execute definition statements, validate constraints

• generated quantities (once per draw, double type)

– content: declare and define generated quantity variables;
includes pseudo-random number generators
(for posterior predictions, event probabilities, decision making)

– execute: execute definition statements, validate constraints
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User-Defined Functions (Stan 2.3)
• functions (compiled with model)

– content: declare and define general (recursive) functions
(use them elsewhere in program)

– execute: compile with model

• Example

functions {

real relative_difference(real u, real v) {
return 2 * fabs(u - v) / (fabs(u) + fabs(v));

}

}
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Variable and Expression Types
Variables and expressions are strongly, statically typed.

• Primitive: int, real

• Matrix: matrix[M,N], vector[M], row_vector[N]

• Bounded: primitive or matrix, with
<lower=L>, <upper=U>, <lower=L,upper=U>

• Constrained Vectors: simplex[K], ordered[N],
positive_ordered[N], unit_length[N]

• Constrained Matrices: cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[M,N], cholesky_factor_corr[K]

• Arrays: of any type (and dimensionality)
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Logical Operators

Op. Prec. Assoc. Placement Description

|| 9 left binary infix logical or

&& 8 left binary infix logical and

== 7 left binary infix equality
!= 7 left binary infix inequality

< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal

15



Arithmetic and Matrix Operators
Op. Prec. Assoc. Placement Description

+ 5 left binary infix addition
- 5 left binary infix subtraction

* 4 left binary infix multiplication
/ 4 left binary infix (right) division

\ 3 left binary infix left division

.* 2 left binary infix elementwise multiplication

./ 2 left binary infix elementwise division

! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)

^ 2 right binary infix exponentiation

’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing
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Built-in Math Functions

• All built-in C++ functions and operators
C math, TR1, C++11, including all trig, pow, and special log1m, erf, erfc,

fma, atan2, etc.

• Extensive library of statistical functions
e.g., softmax, log gamma and digamma functions, beta functions, Bessel

functions of and second kind, etc.

• Efficient, arithmetically stable compound functions
e.g., multiply log, log sum of exponentials, log inverse logit
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Built-in Matrix Functions
• Basic arithmetic: all arithmetic operators

• Elementwise arithmetic: vectorized operations

• Solvers: matrix division, (log) determinant, inverse

• Decompositions: QR, Eigenvalues and Eigenvectors,
Cholesky factorization, singular value decomposition

• Compound Operations: quadratic forms, variance scaling

• Ordering, Slicing, Broadcasting: sort, rank, block, rep

• Reductions: sum, product, norms

• Specializations: triangular, positive-definite, etc.
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Distribution Library

• Each distribution has

– log density or mass function

– cumulative distribution functions, plus complementary ver-
sions, plus log scale

– pseudo Random number generators

• Alternative parameterizations
(e.g., Cholesky-based multi-normal, log-scale Poisson, logit-scale Bernoulli)

• New multivariate correlation matrix density: LKJ
degrees of freedom controls shrinkage to (expansion from) unit matrix
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Statements

• Sampling: y ~ normal(mu,sigma) (increments log probability)

• Log probability: increment_log_prob(lp);

• Assignment: y_hat <- x * beta;

• For loop: for (n in 1:N) ...

• While loop: while (cond) ...

• Conditional: if (cond) ...; else if (cond) ...; else ...;

• Block: { ... } (allows local variables)

• Print: print("theta=",theta);

20



Full Bayes with MCMC

• Adaptive Hamiltonian Monte Carlo (HMC)

• Adaptation during warmup

– step size adapted to target Metropolis acceptance rate

– mass matrix estimated with regularization
sample covariance of second half of warmup iterations

(assumes constant posterior curvature)

• Adaptation during sampling

– number of steps
aka no-U-turn sampler (NUTS)

• Initialization user-specified or random unconstrained
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Posterior Inference

• Generated quantities block for inference
(predictions, decisions, and event probabilities)

• Extractors for samples in RStan and PyStan

• Coda-like posterior summary

– posterior mean w. standard error, standard deviation, quan-
tiles

– split-R̂ multi-chain convergence diagnostic (Gelman and ...)

– multi-chain effective sample size estimation (FFT algorithm)

• Model comparison with WAIC
(internal log likelihoods; external cross-sample statistics)
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Penalized MLE

• Posterior mode finding via BFGS optimization
(uses model gradient, efficiently approximates Hessian)

• Disables Jacobians for parameter inverse transforms

• Models, data, initialization as in MCMC

• Very Near Future

– Standard errors on unconstrained scale
(estimated using curvature of penalized log likelihood function

– Standard errors on constrained scale)
(sample unconstrained approximation and inverse transform)

– L-BFGS optimizer
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Stan as a Research Tool

• Stan can be used to explore algorithms

• Models transformed to unconstrained support on Rn

• Once a model is compiled, have

– log probability, gradient, and Hessian

– data I/O and parameter initialization

– model provides variable names and dimensionalities

– transforms to and from constrained representation
(with or without Jacobian)

• Very Near Future:

– second- and higher-order derivatives via auto-diff
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Part II

Under the Hood
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Euclidean Hamiltonian
• Phase space: q position (parameters); p momentum

• Posterior density: π(q)

• Mass matrix: M

• Potential energy: V(q) = − logπ(q)

• Kinetic energy: T(p) = 1
2p
>M−1p

• Hamiltonian: H(p, q) = V(q)+ T(p)

• Diff eqs:

dq
dt

= +∂H
∂p

dp
dt

= −∂H
∂q
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Leapfrog Integrator Steps
• Solves Hamilton’s equations by simulating dynamics

(symplectic [volume preserving]; ε3 error per step, ε2 total error)

• Given: step size ε, mass matrix M, parameters q

• Initialize kinetic energy, p ∼ Normal(0, I)

• Repeat for L leapfrog steps:

p ← p − ε
2
∂V(q)
∂q

[half step in momentum]

q ← q + εM−1 p [full step in position]

p ← p − ε
2
∂V(q)
∂q

[half step in momentum]
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Standard HMC

• Initialize parameters diffusely
Stan’s default: q ∼ Uniform(−2,2) on unconstrained scale

• For each draw

– leapfrog integrator generates proposal

– Metropolis accept step ensures detailed balance

• Balancing act: small ε has low error, requires many steps

• Results highly sensitive to step size ε and mass matrix M

28



Tuning HMC During Warmup

• Chicken-and-egg problem

– convergence to high mass volume requires adaptation

– adaptation requires convergence

• During warmup, tune

– step size: line search to achieve target acceptance rate

– mass matrix: estimate with second half of warmup

• Use exponentially growing adaptation block sizes
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Position-Independent Curvature

• Euclidean HMC uses global mass matrix M

• Works for densities with position-independent curvature

• Counterexample: hierarchical model

– hierarchical variance parameter controls lower-level scale

– mitigate by reducing target acceptance rate

• Riemannian-manifold HMC (coming soon)

– automatically adapts to varying curvature

– no need to estimate mass matrix

– need to regularize Hessian-based curvature estimate
(Betancourt arXiv; SoftAbs metric)
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Adapting HMC During Sampling

• No-U-turn sampler (NUTS)

• Subtle algorithm to maintain detailed balance

• Move randomly forward or backward in time

• Double number of leapfrog steps each move (binary tree)

• Stop when a subtree makes a U-turn
(rare: throw away second half if not end to end U-turn)

• Slice sample points along last branch of tree

• Generalized to Riemannian-manifold HMC
(Betancourt, arXiv)
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Reverse-Mode Auto Diff

• Eval gradient in small multiple of function eval time
(independent of dimensionality)

• Templated C++ overload for all functions

• Code partial derivatives for basic operations

• Function evaluation builds up expression tree

• Dynamic program propagates chain rule in reverse pass

• Extensible w. object-oriented custom partial propagation

• Arena-based memory management
(customize operator new)
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Forward-Mode Auto Diff

• Templated C++ overload for all functions

• Code partial derivatives for basic operations

• Function evaluation propagates chain rule forward

• Nest reverse-mode in forward for higher-order

• Jacobians

– Rerun propagation pass in reverse mode

– Rerun forward construction with forward mode

• Faster autodiff rewrite coming in six months to one year
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Autodiff Functionals

• Fully encapsulates autodiff in C++

• Autodiff operations are functionals (higher-order functions)

– gradients, Jacobians, gradient-vector product

– directional derivative

– Hessian-vector product

– Hessian

– gradient of trace of matrix-Hessian product
(for SoftAbs RHMC)

• Functions to differentiate coded as functors (or pointers)
(enables dynamic C++ bind or lambda)
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Variable Transforms

• Code HMC and optimization with Rn support

• Transform constrained parameters to unconstrained

– lower (upper) bound: offset (negated) log transform

– lower and upper bound: scaled, offset logit transform

– simplex: centered, stick-breaking logit transform

– ordered: free first element, log transform offsets

– unit length: spherical coordinates

– covariance matrix: Cholesky factor positive diagonal

– correlation matrix: rows unit length via quadratic stick-
breaking
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Variable Transforms (cont.)

• Inverse transform from unconstrained Rn

• Evaluate log probability in model block on natural scale

• Optionally adjust log probability for change of variables
(add log determinant of inverse transform Jacobian)
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Parsing and Compilation

• Stan code parsed to abstract syntax tree (AST)
(Boost Spirit Qi, recursive descent, lazy semantic actions)

• C++ model class code generation from AST
(Boost Variant)

• C++ code compilation

• Dynamic linking for RStan, PyStan
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Coding Probability Functions

• Vectorized to allow scalar or container arguments
(containers all same shape; scalars broadcast as necessary)

• Avoid repeated computations, e.g. logσ in

log Normal(y|µ,σ) =
∑N
n=1 log Normal(yn|µ,σ)

=
∑N
n=1− log

√
2π − logσ − yn − µ2σ 2

• recursive expression templates to broadcast and cache
scalars, generalize containers (arrays, matrices, vectors)

• traits metaprogram to drop constants (e.g., − log
√
2π )

and calculate intermediate and return types
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Models with Discrete Parameters

• e.g., simple mixture models, survival models, HMMs, dis-
crete measurement error models, missing data

• Marginalize out discrete parameters

• Efficient sampling due to Rao-Blackwellization

• Inference straightforward with expectations

• Too difficult for many of our users
(exploring encapsulation options)
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Models with Missing Data

• In principle, missing data just additional parameters

• In practice, how to declare?

– observed data as data variables

– missing data as parameters

– combine into single vector
(in transformed parameters or local in model)
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Part III

What’s Next?
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Differential Equation Solver

• Auto-diff solutions w.r.t. parameters

• Integrate coupled system for solution with partials

• Auto-diff coupled Jacobian for stiff systems

• C++ prototype integrated for large PK/PD models

– Project with Novartis: longitudinal clinical trial w. multiple drugs,
dosings, placebo control, hierarchical model of patient-level ef-
fects, meta-analysis

– Collaborators: Frederic Bois, Amy Racine, Sebastian Weber

42



L-BFGS Optimizer

• Faster, lower memory, more stable than BFGS

• Plug-and-play in interfaces

• Code and doc complete; under testing
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Higher-Order Auto-diff

• Finish higher-order auto-diff for probability functions

• May punt some cumulative distribution functions
(Black art iterative algorithms required)

• Code complete; under testing
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Riemannian Manifold HMC

• NUTS generalized to RHMC
(Betancourt arXiv paper)

• SoftAbs metric

– Eigendecompose Hessian

– positive definite with positive eigenvalues

– condition by narrowing eigenvalue range

– Betancourt arXiv paper

• Code complete; awaiting higher-order auto-diff
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Thermodynamic Sampler

• Physically motivated alternative to “simulated” annealing
and tempering (not really simulated!)

• Supplies external heat bath

• Operates through contact manifold

• System relaxes more naturally between energy levels

• Prototype complete
(Betancourt paper on arXiv; for geometers)
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Marginal Maximum Likelihood

• Marginalize out hierarchical parameters

• Gradient-based nested optimization algorithm

• Errors estimated via curvature as in MLE

• Design complete; awaiting parameter tagging
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“Black Box” VB and EP
• Black box so can run any model

(Laplace or other approximations)

• Stochastic, data-streaming variational Bayes (VB)

• Data-parallel expectation propagation (EP)
(cavity distributions provide general shard combination)

• Both use point estimates of parametric approximation to
posterior

• Optimize parameters to minimize KL divergence
(VB, EP measure divergence in opposite directions)

• Prototype stage
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The End
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Stan’s Namesake

• Stanislaw Ulam (1909–1984)

• Co-inventor of Monte Carlo method (and hydrogen bomb)

• Ulam holding the Fermiac, Enrico Fermi’s physical Monte Carlo

simulator for random neutron diffusion
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Appendix I

Bayesian Data Analysis
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Bayesian Data Analysis

• “By Bayesian data analysis, we mean practical methods for
making inferences from data using probability models for
quantities we observe and about which we wish to learn.”

• “The essential characteristic of Bayesian methods is their
explict use of probability for quantifying uncertainty in
inferences based on statistical analysis.”

Gelman et al., Bayesian Data Analysis, 3rd edition, 2013

52



Bayesian Mechanics

1. Set up full probability model

• for all observable & unobservable quantities

• consistent w. problem knowledge & data collection

2. Condition on observed data

• caclulate posterior probability of unobserved quanti-
ties conditional on observed quantities

3. Evaluate

• model fit

• implications of posterior

Ibid.
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Basic Quantities

• Basic Quantities

– y: observed data

– ỹ: unknown, potentially observable quantities

– θ: parameters (and other unobserved quantities)

– x: constants, predictors for conditional models

• Random models for things that could’ve been otherwise

– Everyone: Model data y as random

– Bayesians: Model parameters θ as random
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Distribution Naming Conventions

• Joint: p(y, θ)

• Sampling / Likelihood: p(y|θ)

• Prior: p(θ)

• Posterior: p(θ|y)

• Data Marginal: p(y)

• Posterior Predictive: p(ỹ|y)

y modeled data, θ parameters, ỹ predictions,

implicit: x, x̃ unmodeled data (for y, ỹ), size constants
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Bayes’s Rule for the Posterior

• Suppose the data y is fixed (i.e., observed). Then

p(θ|y) = p(y, θ)
p(y)

= p(y|θ)p(θ)
p(y)

= p(y|θ)p(θ)∫
p(y, θ) dθ

= p(y|θ)p(θ)∫
p(y|θ)p(θ) dθ

∝ p(y|θ)p(θ) = p(y, θ)

• Posterior proportional to likelihood times prior (i.e., joint)
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Monte Carlo Methods

• For integrals that are impossible to solve analytically

• But for which sampling and evaluation is tractable

• Compute plug-in estimates of statistics based on randomly
generated variates (e.g., means, variances, quantiles/intervals,
comparisons)

• Accuracy with M (independent) samples proportional to

1√
M

e.g., 100 times more samples per decimal place!

(Metropolis and Ulam 1949)
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Monte Carlo Example
• Posterior expectation of θ:

E[θ|y] =
∫
θ p(θ|y) dθ.

• Bayesian estimate minimizing expected square error:

θ̂ = arg min
θ′
E[(θ − θ′)2|y] = E[θ|y]

• Generate samples θ(1), θ(2), . . . , θ(M) drawn from p(θ|y)

• Monte Carlo Estimator plugs in average for expectation:

E[θ|y] ≈ 1
M

M∑
m=1

θ(m)
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Monte Carlo Example II

• Bayesian alternative to frequentist hypothesis testing

• Use probability to summarize results

• Bayesian comparison: probability θ1 > θ2 given data y?

Pr[θ1 > θ2|y] =
∫ ∫

I(θ1 > θ2) p(θ1|y) p(θ2|y) dθ1 dθ2

≈ 1
M

M∑
m=1

I(θ(m)1 > θ(m)2 )

• (Bayesian hierarchical model “adjusts” for multiple com-
parisons)
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Markov Chain Monte Carlo

• When sampling independently from p(θ|y) impossible

• θ(m) drawn via a Markov chain p(θ(m)|y, θ(m−1))

• Require MCMC marginal p(θ(m)|y) equal to true posterior
marginal

• Leads to auto-correlation in samples θ(1), . . . , θ(m)

• Effective sample size Neff divides out autocorrelation (must
be estimated)

• Estimation accuracy proportional to 1/
√
Neff
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Gibbs Sampling

• Samples a parameter given data and other parameters

• Requires conditional posterior p(θn|y, θ−n)

• Conditional posterior easy in directed graphical model

• Requires general unidimensional sampler for non-conjugacy

– JAGS uses slice sampler

– BUGS uses adaptive rejection sampler

• Conditional sampling and general unidimensional sampler
can both lead to slow convergence and mixing

(Geman and Geman 1984)
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Metropolis-Hastings Sampling

• Proposes new point by changing all parameters randomly

• Computes accept probability of new point based on ratio
of new to old log probability (and proposal density)

• Only requires evaluation of p(θ|y)

• Requires good proposal mechanism to be effective

• Acceptance requires small changes in log probability

• But small step sizes lead to random walks and slow con-
vergence and mixing

(Metropolis et al. 1953; Hastings 1970)
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