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SUMMARY

Dramatically expanded routine adoption of the Bayesian approach has substantially increased
the need to assess both the confirmatory and contradictory information in our prior distribution
with regard to the information provided by our likelihood function. We propose a diagnostic 15

approach that starts with the familiar posterior matching method. For a given likelihood model,
we identify the difference in information needed to form two likelihood functions that, when
combined respectively with a given prior and a baseline prior, will lead to the same posterior
uncertainty. In cases with independent, identically distributed samples, sample size is the nat-
ural measure of information, and this difference can be viewed as the prior data size M(k), 20

with regard to a likelihood function based on k observations. When there is no detectable prior-
likelihood conflict relative to the baseline, M(k) is roughly constant over k, a constant that
captures the confirmatory information. Otherwise M(k) tends to decrease with k because the
contradictory prior detracts information from the likelihood function. In the case of extreme con-
tradiction, M(k)/k will approach its lower bound −1, representing a complete cancelation of 25

prior and likelihood information due to conflict. We also report an intriguing super-informative
phenomenon where the prior effectively gains an extra (1 + r)−1 percent of prior data size rela-
tive to its nominal size when the prior mean coincides with the truth, where r is the percentage of
the nominal prior data size relative to the total data size underlying the posterior. We demonstrate
our method via several examples, including an application exploring the effect of immunoglobu- 30

lin levels on lupus nephritis. We also provide a theoretical foundation of our method for virtually
all likelihood-prior pairs that possess asymptotic conjugacy.

Some key words: confirmatory information; contradictory information; non-informative prior; prior distribution; prior-
likelihood conflict; super-informative prior.
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1. THE NEED FOR ASCERTAINING PRIOR IMPACT35

By now, the beauty of Bayesian logic is well appreciated, even by many who do not necessarily
adopt it practically. Among all the common reservations about the Bayesian approach, only one
appears to have stood the test of time: the difficulty in choosing the prior and in fully understand-
ing its impact. Objective Bayesians face the impossibility of constructing a truly non-informative
prior. This is not merely a philosophical quibble, but a problem practitioners routinely face. As40

is well known, posterior inference can be affected substantially by the scale of the parameter
space on which we put a constant prior, even if the constant prior is usually regarded as be-
ing “non-informative”. Alternatively, subjective Bayesians must translate prior knowledge into a
suitable prior distribution. However, perfectly reflective prior specification is only a theoretical
desideratum; in practice a prior sensitivity analysis is generally desirable.45

As the adoption of Bayesian methods in data-rich applications becomes increasingly routine,
it is more important than ever to have methods for quantitatively assessing the impact of priors,
permitting at least a check on how weak or strong our prior information is compared to the
information in our likelihood function. Putting it differently, even if we have a real (subjective)
informative prior, it is still desirable, both scientifically and statistically, to assess how much50

of our posterior inference is due to our prior knowledge. A posterior inference with 45% prior
information contribution may affect our decisions rather differently, even if only psychologically,
from one with only 5% prior information contribution.

However, quantifying the impact of a prior has proven to be a rather challenging task, and
an all-encompassing approach is seemingly philosophically and mathematically impossible. A55

key difficulty is that information from the prior may actually be in conflict with that from the
likelihood, and hence it can “subtract” rather than “add” to an analysis. Indeed, it is not hard
to argue that, to a degree, such conflict is always present, just as all models are wrong. Hence,
we explore a strategy that attempts simultaneously to (i) assess if the prior-likelihood conflict is
more serious than we expect, and (ii) quantify the impact of the prior on our posterior inference.60

To circumvent the issue of lacking a truly non-informative prior as the benchmark, we resort to
the common approach of assuming a “default” prior as the baseline, as in Evans & Jang (2011).
That is, a prior a practitioner would adopt without any real prior information. Furthermore, our
procedure accomplishes (i) and (ii) with easily interpretable metrics such as prior sample size. At
the heart of our method is the idea of determining how many observations it takes, approximately,65

to match the prior contribution to the reduction in uncertainty of a particular inference. Of special
interest is that, for a prior with detectable contradictory information, the “prior data size” tends
to decrease with the actual data size underlying the likelihood function.

The idea of matching distributions for equating information is not novel. Among the literature
that we are aware of, the approach taken by Morita et al. (2008) seems closest to ours, as they70

also compute an effective sample size of a prior relative to a baseline prior using a distribution
matching scheme. Technical differences between the two approaches include the quantity be-
ing matched (the curvature of logarithm of a distribution versus a measure of uncertainty) and
distributions used for diagnostics (they match the prior to a posterior and we match two posteri-
ors). But most critically, their measure is fully determined by the prior and the likelihood model,75

which does not reflect the specific data at hand. Whereas we fully agree with their emphasis
on the usefulness of their measure for prior elicitation before data collection, a data-free mea-
sure by definition cannot accomplish the task for assessing either confirmatory or contradictory
information in a prior with respect to a specific likelihood function.

Other related work include various deviance information criterions for measuring model fit-80

tness, such as Spiegelhalter et al. (2002), Watanabe (2010) and Watanabe (2013), and others as
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reviewed in Gelman et al. (2013). These methods are similar in spirit to our goal for quantify-
ing prior-likelihood conflicts, and they also provide useful information deviances to be employed
within our framework, though in this paper we focus on the usual quadratic loss type of measures.
Furthermore, the concept of relative surprise has been used in Evans (1997), Evans & Moshonov 85

(2006), and Evans & Jang (2011) for a variety of procedures including detecting prior-likelihood
conflicts, with the last one also incorporating baseline priors.

The paper is organized as follows. Section 2 provides an overview of our strategy, and then
Section 3 implements it for the setting with independent and identically distributed samples.
Section 4 provides a proof-of-concept example, a simulation study, and a real-data application. 90

Section 5 establishes theoretical justifications, and Section 6 discusses pros and cons, as well as
many open problems. Technical details and proofs are provided in the Appendix.

2. A GENERAL PROPOSAL

Let X ∈ S represent our data set and f(x|θ) be its posited generative density, with θ ∈ Θ
being the model parameter. Define I = I(θ) to be a scalar indicator of information in X , i.e., I 95

is a non-negative real number determined by our model f(x|θ). We therefore can index X by I,
and use the notation XI and xI as needed. For example, when X consists of n independent and
identically distributed observations, we simply set I = n.

Let P be the set of all distributions over Θ, and D : P → [0,∞) be a measure of dispersion
or uncertainty. For example, when θ is univariate, D can be the variance, the mean absolute 100

deviation, the mean squared error to a specified value of the parameter, etc. The range of D
implies that it exists and is finite, a condition which may require us to restrict its domain to a
subset of P . We emphasize that our approach only requires D, not θ, to be univariate.

Assuming θ0 is the value of θ that generates our data at hand, we define the average posterior
uncertainty with respect to the true model as

Uπ,θ0(I) =

∫
S
D [π(θ|xI)] f(xI |θ0)dxI .

We invoke the true density f(xI |θ0) instead of a generic density f(xI |θ) as we want to assess
information and conflict that reflect the nature of the data at hand. The price we pay for this more 105

specific formulation is the need to estimate θ0, an issue we will deal with in Section 3.
Here we outline our general strategy, where, for pedagogical simplicity, we treat θ0 as known.

We compare two prior distributions, π1 and π2, by matching their corresponding average poste-
rior uncertainty under a given likelihood model. Specifically, for a given θ0, we defineM12(I) as
the amount of information that is needed to match the average posterior uncertainty in π1(θ|xI) 110

to that in π2(θ|xI); we seek an M12 that satisfies the identity, exactly or approximately,

Uπ1,θ0 (I +M12(I)) = Uπ2,θ0(I). (1)

The interpretation of M12(I) is easiest when our data set X consists of independent and iden-
tically distributed observations, I taken to be the usual sample size, π1 is a “baseline” prior, and
we are interested in how much information there is in π2 relative to that in π1. If the information 115

in the likelihood is proportional to the sample size n, then the information in π2(θ) can be viewed
as proportional to M12(n), relative to the baseline prior π1(θ).

There is, however, a hidden problem in the above interpretation: there is no guarantee that
the solution M12(I) as defined by the equation (1) is non-negative, even if it exists; the only
restriction is M12(I) ≥ −I because I +M12(I) must be non-negative. Additionally, although 120

we will focus on checking the quality of a prior by assuming the likelihood specification is
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acceptable, the concept of prior-likelihood conflict is applicable even when this assumption is
false. We therefore prefer the term prior-likelihood conflict over prior misspecification. A further
subtle point is that even when both the likelihood model and prior distribution are perfectly
specified, the true parameter value or the observed data can still happen to be at extreme tails125

of their respective distribution. Given prior distributions and likelihood functions are largely
artificial inferential constructs, it is important to be aware of their conflict because it serves as a
warning sign of something amiss, even if just due to bad luck. Therefore, prior-likelihood conflict
in this paper should always be understood as the conflict between prior distribution and the actual
likelihood function based on our data, not the general likelihood model specification.130

To see howM(I) helps for detecting prior-likelihood conflict, let us assume it is differentiable
with respect to I, which, as an index for information, can be treated as a continuous index.
Assuming differentiability as needed and taking the derivative with respect to I in identity (1),
we see that

U ′π1,θ0 (I +M12(I))
[
1 +M ′12(I)

]
= U ′π2,θ0(I),

and hence, assuming U ′π1,θ0 (I +M12(I)) 6= 0,

1 +M ′12(I) =
U ′π2,θ0(I)

U ′π1,θ0 (I +M12(I))
. (2)

When D is chosen appropriately, U(I) should be a strictly decreasing function of I , since an
appropriate uncertainty measure decreases as information I increases. This implies that the right
hand side of (2) will be non-negative, yielding a lower bound of −1 on the derivative of M12.
Moreover, a negative M ′12(I) implies that the uncertainty decreases slower when using π2, indi-135

cating (when π1 is a baseline prior) a conflict between the data and the prior π2. This -1 lower
bound has a practical interpretation: the most extreme prior-likelihood conflict detectable is when
the negative information in the prior wipes out every single piece of information–defined by the
information in a single data point–added to the likelihood. Here we emphasize the phrase de-
tectable because even when M12(I) reaches its lower bound −I and hence M ′12(I) = −1, it140

only reflects the negative information in the prior that is detectable via the matching method.
The theoretical limit of the negative information can reach −∞ for example when the supports
of the prior and the likelihood function become non-overlapping, in which case the solution to
(1) does not exist. Albeit in practice (hopefully) there should be enough warning signs before
one needs our method to realize such extreme conflicts, the non-existence of the solution to (1)145

itself is a diagnosis that the prior data size exceeds that of the likelihood function; see Section 3.
On the other hand, when there is no detectable conflict, e.g., when the prior π2 comes from a

well-conducted previous experiment for the same parameter, the information in the prior should
stay about the same regardless of the information in the likelihood function. Consequently,
M ′12(I) will be approximately zero. This interpretation is most obvious when we notice that150

limI→∞M12(I)/I = limI→∞M
′
12(I) by L’Hôpital’s rule when M12 →∞, and that we can

write I +M12(I) = I[1 +R12(I)], whereR12(I) = M12(I)/I ≥ −1 (becauseM12(I) ≥ −I).
Hence M ′12(I) for large I is an approximation of the direct measure R12(I), the percentage of
information gained or lost, depending on when the prior information adds (R12(k) > 0) or sub-
tracts (R12(k) < 0) due to prior-likelihood conflict, For example R(100) = −0.3 means that155

although the likelihood function was based on 100 data points, the contradictory information
from the prior would cost us about 30% of the data, i.e., our inference result will have approxi-
mately the same uncertainty as the posterior inference based on 70 data points and the baseline
prior.
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For small I’s, we find both M ′12(I) and R12(I) useful because the former can indicate 160

prior-likelihood conflict even if R12(I) > 0, such as in the “too-good-to-be-true” case of super-
information to be discussed in Section 4·1. We remark, however, that the discrete counterpart of
M ′12(I), that is, the finite difference M12(k + 1)−M12(k) when I = k, is not asymptotically
equivalent to R12(k) unless R12(k + 1) = [1 + op(k

−1)]R12(k). We thus avoid using the finite
difference to estimate limk→∞R12(k), and instead use a regression estimator as in Section 3. 165

The use of M12(I) to measure Iprior, the prior information, leads to a natural information
additivity. That is, if we view I +M12(I) as the information measure for the posterior, Iposterior,
then trivially we have

Iposterior = Ilikelihood + Iprior (3)

because the information in the likelihood, Ilikelihood, is I in our setup. The practical appeal of
(3) cannot be overstated. This is, however, a non-standard information decomposition because 170

Iprior = M12 can be negative, with negative values pointing to a prior-likelihood conflict. When
our likelihood can be trusted, such a negative value reflects a misspecification of the prior. It is
also important to emphasize that because we measure information relative to a baseline prior π1,
the prior-likelihood conflict we can detect should be interpreted as the extra conflict caused by
π2 in excess of the conflict already existing in π1. 175

Before dropping the subscript in M12(I), we mention an obvious link between M12(k) and
its “transpose” M21(k):

Uπ2,θ0(I) = Uπ1,θ0 (I +M12(I)) = Uπ2,θ0(I +M12(I) +M21(I +M12(I))). (4)

Assuming Uπ2,θ0(I) is strictly monotone and all solutions exist, we then arrive at

M12(I) = −M21 (I +M12(I)) .

This is essentially an information preservation identity. It says that if it takes an M12(I) amount
of information moving from π1 to π2 with I amount of likelihood information to reach I +
M12(I), then it will take the same amount back—hence the negative sign—from π2 to π1 when 180

the likelihood information is already at I +M12(I).
Furthermore, Mij(I) preserves additivity with multiple priors in the following sense:

M13(I) = M12 (I +M23(I)) +M23(I), (5)

which is again a consequence of the definition of M , with the additional assumption that
Uπ3,θ0(I) is strictly monotone. Here π3 is a third prior, and identity (5) is the generalization
of the intuitive case, M13 = M12 +M23, which holds when there is no conflict between the 185

likelihood and any of the three priors, and hence all Mij(I) are (approximately) free of I .

3. A SPECIFIC DIAGNOSTIC PROCEDURE

3·1. Implementation
Here we present a specific implementation of the general strategy when our data consist of

independent and identically distributed observations, X1, . . . , Xn, and hence I = n, the sample 190

size. As before, we assume that Xi is distributed according to f(x|θ), with π(θ) being the prior
distribution for θ. Under this setup, our general strategy can be realized in the following way:

1. Choose a baseline prior πb(θ), henceforth called “the baseline”, that would be used if no real
prior information is available. For example, πb could be chosen as an “objective” or reference
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prior; see Kass & Wasserman (1996) and Berger et al. (2009). A flexibility of our strategy is195

the allowance of atypical baselines (e.g., Protassov et al., 2002).
2. Choose D(·) and then construct an estimator of

Uπ,θ0(k) = E[D(π(θ|X1, . . . , Xk))|θ = θ0],

for k = 1, . . . ,K, where we choose K = O(n1/2) for reasons presented later. In our setup,
we can let ωk be the

(
n
k

)
× k matrix enumerating all possible

(
n
k

)
subsamples of {1, . . . , n}

of size k. Compute200

Ûπ,θ0(k) =
1(
n
k

) (nk)∑
j=1

D[π(θ|Xωk(j,1), . . . , Xωk(j,k))]. (6)

Practically, it is often unnecessary to enumerate completely; a sub-sampling scheme with or
without replacement will suffice. That is, we can use a bootstrap estimator.

3. Compute Ûπb,θ0(k) analogously to Ûπ,θ0(k), with the baseline πb in place of the prior π.
4. Plot both Ûπ,θ0(k) and Ûπb,θ0(k) against k. If everything behaves properly, there should be a

few noticeable characteristics, at least when k is not too small:205

a. The curve for Ûπ,θ0(k) should be lower than that for Ûπb,θ0(k). Otherwise the less infor-
mative prior outperforms the more informative one, indicating a prior misspecification.

b. Both curves should decrease monotonically with respect to k. A violation of this mono-
tonicity may indicate a prior-likelihood conflict, which should not happen for the baseline
if it is chosen as advertised. In essence, the prior and likelihood would be pointing in such210

different directions that our uncertainty could actually increase.
5. Next we use Ûπ,θ0(k) and Ûπb,θ0(k) to compute the effective sample sizes captured by π. We

first interpolate the Û functions so they live on the real line. We use linear interpolation for
simplicity, but one can investigate more sophisticated methods. We then define

M̂(k) = arg min{m ∈ R : Ûπ,θ0(k) = Ûπb,θ0(m+ k)}.

Note however that in order for M̂(k) to exist, we need to avoid (at least) Ûπ,θ0(0) <

Ûπb,θ0(K), that is, the prior information in π is so strong that the information contained in
the entire likelihood with all K observations plus the baseline prior information still cannot
match it. Whereas as a numerical procedure we can try k (and hence K) as large as n, the215

very fact that we need to do so should serve as a warning that the prior is very informative.
Indeed, if the solution still does not exist when k = n, then it suggests that at least 50% of
our posterior information comes from our prior π.

6. Plot the sequence M̂(k) and R̂(k) = M̂(k)/k against k, for k = 1, . . . ,K, and regress M̂(k)
on k for k = k0, . . . ,K for some suitably chosen k0 to estimate an approximate limiting slope220

of M̂(k) as a function of k, denoted by SK . Based on our current theoretical and empirical
evidence, we observe the following:
– when there is no noticeable prior-likelihood conflict, M̂(k) will stay fairly constant, and

hence SK ≈ 0, and R̂(k) will approach zero rather rapidly as k increases;
– any serious departure of M̂(k) from being a constant function, especially as a monotone225

decreasing function, indicates a prior-likelihood conflict;
– both R(k) and SK serve as measures of the degree of conflict, where R(k) measures the

loss (or gain) due to the prior-likelihood conflict at a finite k ≤ K, and SK serves an
estimator of R(n) for n >> K;
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– very serious prior-likelihood conflict will cause R̂(k) or SK to approach −1, that is, in 230

the most extreme cases, the conflict would essentially wipe out all the information in the
likelihood function.

We remark here that we use SK to estimate R(n) instead of R̂(K) because K needs to be
chosen such that n/K = O(n1/2)→∞ and hence R̂(K) is often too far from R(n). However,
as long as we are able to choose k0 such that M̂(k) for k ≥ k0 is reasonably linear in k, we can 235

approximate R(n) by the slope of M(k), which can then be estimated via the least-squared esti-
mator from regressing M̂(k) on k for k ≥ k0. Furthermore, as we shall demonstrate in Section 4,
the signs of SK and R(K) can be different, with SK tending to reveal the conflict earlier than
any {R(k), k = 1, . . . ,K} could. We believe this is largely due to the global nature of SK as
well as the fact that even in the presence of a prior-likelihood conflict, the prior can still help to 240

gain information before the likelihood becomes overwhelming. Indeed, it is also possible to have
Sk < 0 but R(k) > 0 for all k > k0, as in the case of “too-good-to-be-true” super-information
phenomenon revealed in Section 4. In other words, SK does not discriminate between “bad con-
flict” and “good conflict”, though the latter is much less likely in real applications.

3·2. Choosing D 245

The choice ofD should reflect aspects of the posterior that are most significant to our study, as
well as the need for measuring prior informativeness and for assessing prior–likelihood conflict.
In some settings a simple measure such as variance may be sensitive to both. However, even in
cases such as the normal data, normal prior, and known variance example, as seen in Section
4·1, variance alone has zero power for detecting prior–likelihood conflict. In such settings the 250

inclusion of a measure of bias is necessary, resulting in a mean squared error measure.
In our theory given in Section 5, we will use a form of the mean squared error:

D(π(θ| ~Xk)) = Varπ(θ| ~Xk) + [Eπ(θ| ~Xk)− θ0]2, (7)

where, for notation simplicity, we assume θ is univariate and denote ~Xk for {X1, . . . , Xk} for all
k. Obviously θ0 is unknown, so in applications we will estimate it by θ̂0 = Eπb [θ|X1, . . . , Xn], 255

the posterior mean under the baseline prior and based on all data. Consequently, we replace (7)
by its estimator

D̂(π(θ| ~Xk)) = Varπ(θ| ~Xk) + [Eπ(θ| ~Xk)− θ̂0]2, (8)

which we will use for all the development and examples below.
For additional ideas on choosing D, we reference Morita et al. (2008) for a measure based on 260

curvature of the log likelihood and Gelman et al. (2013) for measures based on deviances. We
also emphasize that, as long as it is computationally feasible, there is nothing stopping one from
applying our method for multiple Ds. Indeed, it is mathematically impossible to have a single
measure assess the impact of a prior on all aspects of our posterior inference, and it is inferentially
desirable to assess the impact of prior with a variety of choices of D. In particular, for a multi- 265

dimensional posterior, we can choose the same D or different Ds for different margins, or a D
which examines the parameters jointly.
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4. THEORETICAL AND EMPIRICAL ILLUSTRATIONS

4·1. Normal with Known Variance
The normal mean problem, permitting explicit expressions, illustrates nicely our method and270

the theoretical results in Section 5. Assume that {X1, . . . , Xn} is a simple random sample from
N(µ, σ2), with µ our estimand θ, and σ2 known. We adopt the usual conjugate prior on µ,
N(µπ, σ

2
π), and for the baseline the usual constant prior, which can also be viewed as setting

σ2π =∞. Let X̄k be the sample mean, γ = σ2/σ2π be the variance ratio, andAγ(k) = (γ + k)−1

be the usual shrinkage factor when our data are ~Xk (k ≤ n). Then it is well-known that275

Eπ[µ| ~Xk] = Aγ(k)
(
γµπ + kX̄k

)
, Varπ[µ| ~Xk] = Aγ(k)σ2, (9)

Eπb [µ| ~Xk] = X̄k, Varπb [µ| ~Xk] =
σ2

k
. (10)

Following (6) and (8), under our conjugate prior π, we have

Ûπ,θ0(k) = Aγ(k)σ2 +
1(
n
k

) (nk)∑
j=1

[
Aγ(k)

(
γµπ + kX̄ωk(j)

)
− X̄n

]2
, (11)

where X̄ωk(j) is the sample mean of Xωk(j,1), . . . , Xωk(j,k). The corresponding expression for280

Uπb,θ0(k) is obtained by simply setting γ = 0 in (11), which renders Aγ(k) = k−1, and hence

Ûπb,θ0(k) =
σ2

k
+

1(
n
k

) (nk)∑
j=1

(X̄ωk(j) − X̄n)2. (12)

To gain theoretical insights, we look at asymptotic cases with large n but with k � n :

Ûπ,θ0(k) ≈Aγ(k)σ2 + E
[
Aγ(k)(γµπ + kX̄k)− µ0

]2
=σ2

[
Aγ(k) + γ∆2 A2

γ(k) + kA2
γ(k)

]
, (13)285

Ûπb,θ0(k) ≈k−1σ2 + E[X̄k − µ0]2 = 2k−1σ2 (14)

where µ0 is the true data generating parameter, and ∆ = (µπ − µ0)/σπ is a direct measure of
the misspecification of our conjugate prior. Consequently, we can solve explicitly

Ûπ,θ0(k) = Ûπb,θ0(k +M(k)) (15)

forM(k) when we use the limiting expressions given respectively by the most right-hand sides of
(13) and (14). We note again that (14) corresponds to (13) with γ = 0, and hence Aγ(k) = k−1.290

Combining (13)-(15), we can easily arrive at

M(k) =
2

Aγ(k) + γ∆2A2
γ(k) + kA2

γ(k)
− k = k

{
1

r[1 + (1− r)(∆2 − 1)/2]
− 1

}
, (16)

where r = k/(γ + k). We see immediately that when ∆→∞, which indicates extreme prior-
likelihood conflict,M(k) approaches−k, or equivalently,M(k)/k approaches−1; in Section 5,
we will show that this is a general phenomenon.

At the other extreme, if our prior is the posterior from a previous study based on a simple295

random sample ~Ym = {Y1, . . . , Ym} from the same N(µ0, σ
2), and we use the same baseline

constant prior, then µπ = Ȳm and σ2π = σ2/m, and hence γ = m. Consequently, ∆2 = m(Ȳm −
µ0)

2/σ2 is on average equal to 1 (with respect to the previous data). If we indeed replace ∆2 by
1, then it is easy to verify that M(k) = m, as desired.
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We observe that the “other extreme” did not occur at ∆ = 0, which seems to eliminate any 300

prior-likelihood conflict. However, we must keep in mind that setting µπ equal to the true pa-
rameter injects more prior information than a typical previous real-data study can offer. This
difference is precisely captured by (Ȳm − µ0)2/σ2, which is of order m−1, and hence cannot be
ignored. Indeed, if we do set ∆ = 0 in (16) but still keep γ = m, we will arrive at

M(k) =

(
3

2
+

m

2(m+ 2k)

)
m =

(
2− k

m+ 2k

)
m. (17)

Because the first factor on the right hand side of (17) is always strictly within the interval (1.5, 2), 305

we know that setting the prior mean to the true mean always increases the prior data/information
size m by at least 50%, and often close to 100% when m is large, relative to k.

From (17), we see M(k) is a strictly monotone decreasing function of k, and hence its
derivative–treating k as continuous–will be negative. The criterion of negative slope then would
suggest that setting the prior mean to be the truth also creates a prior-likelihood conflict. How- 310

ever, this is not illogical because as far as the likelihood function is concerned, the prior is “too
good to be true”. In Section 5 we will show that this “too good to be true” or super-informative
phenomenon is rather general and so is the expression (17).

4·2. A Simulation Study
Here we provide numerical illustrations for the normal setting above, as well as for a similar 315

setting but with the exponential distribution. In both settings we explore various parameter values
that reflect varying degrees of prior misspecification. The estimated measure of uncertainty, D,
we use in all simulations is (8). Throughout, we use a resampling scheme where we take 100,000
sub-samples without replacement, to construct the estimates Ûπ,θ and Ûπb,θ0 . In all of our settings
the Û plots were simply monotonically decreasing functions, thus we omit them for brevity. 320
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Fig. 1. Normal with Known Variance – Plots of the esti-
mated prior sample size M̂(k) (left) and the relative prior
sample size R̂(k) = M̂(k)/k (right) versus the likelihood
data size k; the four curves correspond to the four scenarios

given in Table 1.

Normal with Known Variance
We simulate our procedure in the setting given in Section 4·1, with n = 1000 and under the

parameter scenarios given in Table 1. The true mean is µ0 = 1 and the variance is σ2 = 1. The
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baseline is taken to be constant on the real line. The resulting M̂(k) and R̂(k) plots are given
in Figure 1. The estimated slopes for M̂(k) in Table 1 are from least squares by using k0 = 6,325

because the plots reveal that M̂(k) is closer to being linear once we ignore the segments with
k ≤ 5. We also give R̂(k) at the largest k used, K = 20. From the right panel in Figure 1, it
is clear that R̂(k) will have an asymptote, and as we discussed in Section 2, its limiting value
will be the same as limk→∞ M̂(k). However, Table 1 shows that K = 20 is too small for the
asymptotic equivalence to kick in (which would also require both k0 and K to approach∞). In330

such cases, our current belief is that our slope estimator is a better estimator for R(n), the actual
relative gain or loss of information due to our prior for the entire data set at hand.

µπ σ2π Slope: S20 R̂(20)
1.0 0.25 -0.027 0.303
1.5 0.25 0.004 0.206
2.0 0.25 -0.066 -0.032
3.0 0.25 -0.414 -0.463

Table 1. Prior parameter values for Figure 1, and the estimated slope S20 and R̂(20).

As we can see from the plots, the procedure behaves as expected from the asymptotic calcu-
lations given in the previous section. The case of µπ = 1 = µ0 represents the super-informative
case, with the prior worth approximately 6 data points, 50% more than the nominal prior size335

γ = σ2/σ2π = 4. When µπ = 1.5, ∆2 = 1 using the notation in Section 4·1, and hence M̂(k)
recovers the nominal size γ = 4 for all k, as the line of triangles demonstrates. When µπ = 2,
the values of M̂(k) become negative, though only slightly, indicating a mild prior-likelihood
conflict. This is not surprising in view of the fact that the ideal case recovering the prior size
being exactly 4, is given by µπ = 1.5, which is only 0.5 units away from µπ = 2.340

However, when µπ = 3, there is a rather serious prior-likelihood conflict, both visually and
as measured by S20 or by R(20), which amounts to subtracting almost half of a sample per
data point added. That is, for a likelihood based on 20 data points, the misspecified N(3, 0.25)
prior would cost about 9 data points worth of information. Concretely, the Bayesian estimator—
posterior mean or mode—for µ will have a mean squared error that is about double that of the345

maximum likelihood estimator, the sample mean. In practice of course we are unlikely to be able
to attribute the conflict solely to the misspecification of the prior. But being able to detect such
conflicts can help us to re-examine our assumptions, conduct more model checking, contemplate
using multiple estimates (e.g., considering both the maximum likelihood estimator and Bayesian
estimator), etc. Minimally it would help to prevent us from blindly trusting our posterior infer-350

ence and letting misspecifications manifest into potentially consequential damages.

Exponential under Two Parameterizations
We now assume that X1, . . . , Xn are exponential random variables with mean µ = λ−1 and

variance µ2 = λ−2. By comparing the case of θ = µ with θ = λ, we reveal the rather sensitive
nature of the prior-likelihood conflict to parameterizations when our Bayesian estimators or the355

uncertainty measure are not invariant to parameterization. This is the case when we use the
common posterior mean as our estimator, or mean squared error as our D. We emphasize that
such sensitivities are not due to artifacts of our procedure, but rather because it honestly captures
how a chosen uncertainty measure of a chosen estimator behaves as a functional of the likelihood,
the prior, and their interplay.360
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Fig. 2. Exponential – Plots of the estimated prior sample
size M̂(k) (left) and the relative prior sample size R̂(k) =
M̂(k)/k (right) versus the likelihood data size k; the four
curves correspond to the four scenarios given respectively
in the upper and bottom panels in Table 2, where the top
panel/plots refer to the prior placed on the rate λ while the

bottom ones refer to the mean µ = λ−1.

As is well-known, the conjugate prior on λ is gamma, Γ(α, β), with E(λ) = α/β, and
Var(λ) = E2(λ)/m, where m = α can be viewed as the nominal prior size. The conjugate
prior on µ is then the inverse gamma Γ−1(α, β) where E(µ) = β(α− 1)−1 and Var(µ) =
(α− 2)−1 E2(µ). Notice that E(µ) =∞ when α ≤ 1 and Var(µ) =∞ when α ≤ 2. Our base-
line is given by taking (α, β)→ 0, which is equivalent to taking πb(θ) ∼ θ−1, regardless of 365

whether θ = λ or θ = µ. The posterior of λ under the Γ(α, β) prior is also a gamma distribution,
with mean and variance given by

Eπ[λ| ~Xk] =
α+ k

β + kX̄k
, Varπ[λ| ~Xk] =

α+ k

(β + kX̄k)2
. (18)

Similarly, the posterior for µ under the Γ−1(α, β) prior is the inverse gamma with mean and
variance 370

Eπ[µ| ~Xk] =
β + kX̄k

α+ k − 1
, Varπ[µ| ~Xk] =

(β + kX̄k)
2

(α+ k − 1)2(α+ k − 2)
. (19)
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We apply our procedure to simulated data with n = 1000 and under the parameter scenarios
given in Table 2 for the rate λ and the mean µ. We attempt to control prior misspecification by
fixing the prior variance and adjusting the prior mean (for λ) and then matching the scenarios
for µ to the ones for λ. The true parameter value is λ = 2 or µ = 1/2. The resulting plots are375

given in Figure 2, and the estimated slope and R̂(20) are in Table 2. Again we see the asymptote
tendencies in the right panels of Figure 2, yet the K, the largest value of k we used, is still too
small to deliver reliable numerical limiting value, as seen from the rather large discrepancies
between the columns of Ŝ20 and R̂(20) revealed in Table 2. As discussed before, we will trust
more the slope estimator than R̂(20) as an approximation to R(n).

α β E(λ|α, β) Var(λ|α, β) S20: Slope R̂(20)
20.0 10.0 2.0 0.2 -0.281 1.906
5.0 5.0 1.0 0.2 0.124 0.655
0.1 0.5 0.1 0.2 -0.024 0.184
45.0 15.0 3.0 0.2 -0.538 0.012

α β E(µ|α, β) Var(µ|α, β) S20: Slope R̂(20)
20.0 10.0 0.526 0.015 -0.070 1.508
5.0 5.0 1.250 0.521 -0.324 -0.236
0.1 0.5 Inf Inf -0.052 -0.072
45.0 15.0 0.341 0.003 -0.231 0.927

Table 2. Prior parameter values for Figure 2, and the estimated slopes for M(k) and R̂(20).
The prior placed on λ is Γ(α, β), and on µ = λ−1 is Γ−1(α, β).

380

In this setting we see some characteristics resembling that of the normal setting, as well as
some new phenomena. In the first scenario (α = 20, β = 10), the prior mean is set to be the
truth, the prior sample size is around 40 for the gamma and 30 for the inverse gamma, which
is 100% and 50% higher, respectively, than α = 20, the nominal prior sample size in this set-
ting. However, there is a larger negative slope associated with gamma setting which means that,385

for larger k, the two settings will be closer. This demonstrates that the super-informative phe-
nomenon is not an artifact of the normal setting, and indeed we will verify this theoretically in
Section 5. However, the approximations on which we base the theory are obviously sensitive to
the chosen parameterization (at least for small m/k values).

The second and fourth scenarios tell an interesting and important story concerning the im-390

pact of parameterization on inference. We see that the second scenario (α = 5, β = 5) shows a
positive slope for gamma, but a negative one for the inverse gamma, indicating stronger prior-
likelihood conflict. The fourth scenario (α = 45, β = 15) appears to be the opposite, being
mildly misspecified for the inverse gamma but strongly so for the gamma.

In the third scenario (α = 0.1, β = 0.5) , one might expect to see a prior-likelihood conflict395

for the gamma setting, given how far the prior mean is from the truth. But instead we see that the
prior size is essentially constant around 3-4, higher than α = 0.1, indicating essentially no prior-
likelihood conflict, but rather a super-information phenomenon. Turning to the inverse gamma,
we also see little conflict and that M̂ is very close to zero. This apparent contradiction can be ex-
plained by examining the mean and variance of the prior and the baseline. As mentioned earlier,400

the baseline is obtained by taking α, β to zero, which corresponds to the Jeffreys prior. However,
in terms of the mean and variance (of the gamma setting), the baseline can be approached in
two seemingly different ways: keep the mean constant and send the variance to infinity, or keep
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Fig. 3. Exponential – Plots of estimated prior size M̂(k)
when our uncertainty measureD is taken to be the variance
(left) and bias (right) only, under the four scenarios given

in Table 2 for the rate (λ) only.

the variance constant and send the mean to zero. In both cases α and β will tend to zero and
the prior will approach the baseline. Thus, the prior in the third scenario is actually closer to the 405

baseline than one might initially expect. As we emphasized before, our approach does not detect
conflict already existing in the baseline, but only the extra conflict induced by our prior. When
we fix the prior variance but send the prior mean to the other direction, that is, making it large,
as in the fourth scenario, we see a much clearer prior-likelihood conflict, subtracting about 60%
information per datum for the gamma case and about 20% for the inverse gamma case. 410

Lastly we explore the seemingly peculiar behavior of the second scenario with the gamma
prior on the rate parameter, where the slope of M̂(k) is slightly positive. Such a result seems
counterintuitive and is not seen in the normal or inverse gamma settings. To better understand
this behavior we recompute M̂ , but for the variance and bias separately. That is, in one case
we use a D function which consists only of the variance term in (8), and in another only of the 415

squared bias term. This is done to examine which part of the mean squared error is responsible
for the monotone increasing behavior, not to suggest that the M̂(k) function can be decomposed
into two parts corresponding respectively to variance and bias. The results are given in Figure 3.
There we see that the variance plot behaves as expected, flat or slightly decreasing, but the bias
plot exhibits a positive slope for the second scenario. 420

As an uncertainty measure, variance works well for determining prior impact, but poorly for
detecting prior-likelihood conflict. The bias has the opposite problem, great for conflict detection,
but poor for impact determination. The super information phenomenon is especially prominent
with the bias measure, because it will take a large sample to bring down the bias in the posterior
mean under the baseline prior to the level that is enjoyed by the posterior mean derived from a 425

prior whose mean is set at the true value of the estimand. Furthermore, with no data the prior
alone cannot provide evidence for bias, so adding data can only make things worse, hence the
large negative slope for the bias in the first scenario. Regarding the positive slope phenomenon
in the second scenario, we suspect it is possible because the bias term is a nonlinear function
of the sample mean, in contrast to the normal and inverse gamma setting, where the bias is a 430

linear function of the mean. Taking k large enough will alleviate this behavior as the curve will
level off, but the positive slope serves as a good reminder of the complex and erratic nonlinear
behavior with small k.
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4·3. Application: Logistic Regression for Predicting Lupus
We apply our methods on a data set provided by Dr. Haas, a client at the University of435

Chicago’s consulting program, as reported in van Dyk & Meng (2001). The data set consists
of 55 patients, 18 of which have membranous lupus nephritis also known as stage V lupus. We
also have measurements on the difference between immunoglobulin G3 and G4, which are IgG3
and IgG4 respectively. Haas (1994) was interested in the relationship between this difference and
the presence of stage V lupus. To that end, a logistic regression model on disease status was used440

where a covariate representing the difference between IgG3 and IgG4 was included.
Gelman et al. (2008) investigated the idea of a weakly informative prior, and for logistic re-

gression suggested, after standardizing appropriately, that one use a Cauchy prior with a scale
of 2.5 on the slope parameter. We use our methodology to explore how informative such a prior
really is and whether there is any misspecification using such a prior in the present setting. We445

compare a Cauchy prior with scales 2.5, 5, and 10 against a Cauchy with scale 10000, which in
essence “flattens” out the prior. The results are insensitive to the choice of scale for the baseline
as we see the same patterns when the baseline scale parameter is 1000. We use the metric (6) to
compare the two priors, however instead of taking the mean of this metric over subsamples we
take the median. This helps with the stability of the procedure over smaller subsamples which450

can be a significant problem in a logistic regression, but it poses an open theoretical question
on how sensitive our information assessment is to the choice of estimator for the uncertainty
measure. Furthermore, we examine M̂(k) only for k > 10, because logistic regressions are no-
toriously unstable for small sample sizes. To reduce the impact of the non-linear part of M̂(k)
on the estimation of R(55), we can further take k0 = 20, that is, to estimate R(55) by the least455

squared estimator based on k = 20, . . . , 35.
The results are plotted in Figure 4 with the slopes given in the caption, using both k0 = 10 and

k0 = 20. The plots are a bit more chaotic than in our simulations due, likely, to the smaller sam-
ple size: 55 versus 1000. The prior suggested by Gelman et al. (2008), that is, with scale=2.5,
seems to indeed depict a weakly informative prior, as it does not add a substantial amount of460

information, but only about 2-6 data points, that is, no more than 10% of the information pro-
vided by the likelihood function. There might be some small amount of prior-likelihood conflict.
By taking the scale up to 5 or 10, the conflict is reduced, so is the prior impact. Indeed, the
slope estimators based on k > k0 = 20 are essentially zero regardless of the scale, indicating
essentially negligible prior impact with n = 55. Such practical, quantifiable, and interpretable465

assessments can help greatly to strengthen our inferential conclusions and to communicate them
convincingly, by reducing both the impact and the appearance of ad hoc choices made during our
inference process. Evidently it is more scientific to numerically demonstrate that the impact of
a prior is no more than adding 10% of data than to simply declare that it is weakly informative.
For more studies on weekly informative prior, see Gelman (2006) and Polson & Scott (2012).470

5. THEORETICAL RESULTS

In this section, we provide theoretical justifications for the method presented in Section 3.
These results are by no means exhaustive, but they are applicable to essentially all posterior-
prior families that possess conjugacy, exactly or asymptotically. This (approximate) conjugacy
permits us to index prior information via the intuitive notion of “prior data size”, by equating our475

prior to the outcome from a previous study of similar nature to the data forming the likelihood.
More importantly, the similarity, or rather the lack of it, allows us to model the prior-likelihood
conflict. Specifically, the following assumption plays a critical role in our theoretical formulation.
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Fig. 4. Plot of the estimated prior size M̂(k) for the ap-
plication in Section 4·3. Estimated slopes are −0.1173,
−0.0646, and −0.0283 using k > 10, for scales 2.5, 5,
and 10 respectively. The estimated slopes become 0.0032,

-0.0024, and -0.0079 respectively when using k > 20.

We remark that for simplicity of both derivation and presentation, we will restrict the parameter
θ to be univariate, but the results hold for multivariate θ with necessary extensions of notation 480

(e.g., replace σ2 by Σ, and absolute value by Euclidean norm).

Assumption 1. Assume that X1, X2, . . . , Xn are independent and identically distributed ac-
cording to density f(x|θ) with respect to a measure on R, where θ ∈ R. Assume that our prior
π(θ) is such that there exists m > 0 and µm ∈ R such that for any ~Xk = {X1, . . . , Xk}, we
have the following expansions for the corresponding posterior mean and variance: 485

Eπ[θ| ~Xk] = u(Tk,m) +Op(l
−1) and Varπ[θ| ~Xk] =

v(Tk,m)

l
+Op(l

−2), (20)

where u is a twice differentiable function and v > 0 is a differentiable function on Ωu ≡ {a ∈
R : |u(a)| <∞}, l = k +m,

Tk,m =
mµm + kT̄k
m+ k

, (21)

and T̄k is the average of some Ti = T (Xi) over i = 1, . . . , k, whose mean µT = E[Ti|θ] and
variance σ2T = Var[Ti|θ] are assumed to exist. Furthermore, assume that our baseline prior πb
corresponds to the limiting case of π when m is set to zero. That is, 490

Eπb [θ| ~Xk] = u(T̄k) +Op(k
−1) and Varπb [θ| ~Xk] =

v(T̄k)

k
+Op(k

−2). (22)

Assumption 1 is satisfied by many common conjugate prior distributions including the six
natural exponential families with quadratic variance functions (Morris, 1982); see the Appendix.
Perhaps the easiest way to gain insight is to consider the normal case in Section 4·1, by which
it is particularly easy to understand the Tk.m expression in (21). This is because the normal
case should remind us of expressing the posterior mean as a weighted average of the sample 495

mean and the prior mean, with weights proportional to their respective precisions. In particular,
by comparing (9) to (20), we see that T (x) = x and hence µT = µ and σ2T = σ2; and u(t) =
t, v(t) = σ2, m = σ2/σ2π , µm = µπ, and without the high-order error terms in (20). That is, m



16

here is the total prior precision, 1/σ2π,where σ2π is the prior variance, relative to the data precision
per sample (in terms of Ti = Xi): 1/σ2T .500

This comparison gives us the insight thatm can be interpreted in general as the nominal “prior
data size” measured on the same unit scale as the data for the likelihood, and similarly that µm
can be viewed in general as the prior mean for µT , the mean of T under f(x|θ). We say m
is nominal because the real prior data size, as an appropriate indicator (which therefore does
not need to be an integer) of the amount of information introduced by the prior, must take into505

account the potential conflict between µT and µm, a key issue as we emphasized previously.
Furthermore, Assumption 1 does not require the existence of a mean, but only the existence of
m and µm. For example, in the inverse gamma case in Section 4·2, although E(µ) = β/(α− 1)
does not exist when α ≤ 1, we can still take m = α and µm = β/α, which satisfies Assumption
1 because of (19). Therefore, in general, it would be more accurate to consider µm a measure of510

prior centrality then necessarily the prior mean.
We use the notation µm to denote the prior centrality to remind ourselves that it can, and

often does, depend on the nominal prior data size m, even though this issue has been largely
overlooked in the literature. This is seen most clearly when our prior information actually comes
from a previous study based on a data set {X̃1, . . . , X̃m}, which were also independent and515

identically distributed according to our model f(x|θ) but possibly with a different parameter
value of θ, say θ1, from the one generating the current data {X1, . . . , Xn}, say θ0. Assuming the
previous Bayesian analysis used the same baseline prior πb, we know from (22) that the prior
mean for µT will be approximately T̃m, where T̃m is the average of {T (X̃i), i = 1, . . . ,m}.

Of course, the fact that µm ≈ T̃m is needed much more than merely to justify the notation µm.520

It guides us to carry out an asymptotic analysis that can render meaningful statistical insights for
our purposes. Specifically, the usual asymptotic regime where the data size k going to infinity
but with the prior specifications considered fixed, e.g., the prior data size m as a fixed constant,
is inapplicable here because then the impact of the prior is asymptotically negligible, providing
no insight whatsoever on any prior-likelihood conflict. Indeed, any asymptotic regime where the525

prior impact becomes negligible would run into the same problem.
The simple concept that we can approximate µm by T̃m turns out to provide rather useful

insights for forming an appropriate asymptotic regime, a regime that permits m to grow with k
such that r = m/(k +m) stays within the interval (0, 1). Specifically, if we let ∆ =

√
m(µm −

µT )/σT , then the fact that ∆ ≈
√
m(T̃m − µT )/σT means that even under the assumption θ1 =530

θ0, ∆2 will not approach zero, because ∆2 is a test statistic—based on data T̃m— of the null
hypothesis H0 : θ1 = θ0, and its asymptotic null distribution, as m→∞, is the chi-squared
distribution χ2

1. It is therefore meaningful in our asymptotic regime to consider ∆2 as fixed while
allowing m to grow, especially because ∆2 provides a probabilistic yardstick for assessing how
the prior data set, as a proxy for the prior information, differs from the current data set used for535

the likelihood function. Perhaps an even clearer justification of ∆ is to write m = σ2T /σ
2
π, as we

did before. Then, ∆ = (µm − µT )/σπ, which can be viewed as the relative difference between
the prior mean (or centrality) and the true mean with respect to the prior standard deviation, is
clearly a good measure of how our prior specification deviates from the actual data forming our
likelihood. Consequently, we make the following assumption for our asymptotic regime.540

Assumption 2. For the µm given in Assumption 1, we assume that it can be expressed as

µm = µT + ∆
σT√
m

+Op(m
−1) (23)

for some fixed constant ∆ ∈ R.
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As we shall see in the Appendix, the two assumptions above play a critical role in estab-
lishing an asymptotic expression for the relative prior size M(k)/k. The next assumption is of
a technical nature to ensure that our asymptotic expression is unique. This assumption holds 545

trivially in virtually all applications, but nevertheless we need it to eliminate pathological cases
where properties hold in probability, as assumed in (20), fail to hold almost surely, as required
by Assumption 3, though for practical purposes, this difference is almost immaterial.

Assumption 3. We assume (i) both Ûπ,θ0(I) and Ûπb,θ0(I) converge almost surely to zero as
I →∞, and (ii) for any finite stopping time Î , Ûπb,θ0(Î) > 0, almost surely. 550

THEOREM 1. Assume D̂ as defined in (8), and that both k and m increase to infinity with n,
with the restriction k = O(n1/2) and r = k/(k +m) is strictly between zero and one even at its
limit. We then have the following results, where c = [u′(µT )]2σ2T /{[u′(µT )]2σ2T + v(µT )} ≤ 1.

(A) Under Assumptions 1 and 2, any M(k) = kR(k), where

R(k) = Rr(∆
2) +Op(k

−1/2), with Rr(∆2) =
1

r[1 + c(1− r)(∆2 − 1)]
− 1, (24)

is an asymptotic solution of (15) to the order of Op(k−1/2), that is, 555

Ûπ,θ0(k)

Ûπb,θ0(k +M(k))
= 1 +Op(k

−1/2). (25)

(B) Under further Assumption 3, (25) holds if and only if (24) holds.

Expression (24) makes clear the role ∆2 plays in determining the limiting behavior of the
relative size ratio R(k) = M(k)/k. In particular, as in the normal example, when ∆2 = 1,
Rr(1) = m/k, implying that M(k) will recover the nominal prior size m asymptotically. When
∆2 →∞, representing extreme prior-likelihood conflict, Rr(∆2) goes to its lower limit −1; 560

clearly Rr(∆2) decreases strictly monotonically to −1 as ∆2 increases to∞.
At the other extreme, that is, when ∆ = 0, we see that because we can write

Rr(∆
2) = Ar(∆

2)
m

k
, where Ar(∆

2) = 1− c(∆2 − 1)

1 + c(1− r)(∆2 − 1)
, (26)

we have Rr(0) = (m/k)Ar, with

Ar = 1 +
c

1− (1− r)c
≥ 1. (27)

Therefore, asymptotically, the actual prior size M(k) is larger than the nominal size m by the
factorAr. This is the same super-information phenomenon we saw in the normal example, where 565

c = 1/2, in which case (27) is the same as (17). Intriguingly, the fact c = 1/2 holds much broadly
than in the normal case, though it is not surprising since normality holds asymptotically under
broad regularity conditions.

Specifically, let us assume the usual large-sample equivalence between the likelihood infer-
ence and the Bayesian inference under our baseline prior πb, that is, as k →∞, the posterior 570

variance of θ, Varπb [θ|X̄k] is almost surely the same as the sampling variance of the posterior
mean Eπb [θ| ~Xk]. Then we have from (22), by the δ-method, that

1 = lim
k→∞

V
[
Eπ(θ| ~Xk)

∣∣θ]
Vπ(θ| ~Xk)

= lim
k→∞

[u′(µT )]2σ2T /k

v(µT )/k
=

[u′(µT )]2σ2T
v(µT )

, (28)



18

and hence the c as specified in Theorem 1 is 1/2. In Appendix, we will see that (28) holds for
all examples examined there. Consequently, we see the phenomenon that the super-information
is always between 150% and 200% is general because, whenever c = 1/2,575

3

2
≤ Ar = 1 +

1

1 + r
≤ 2 (29)

and Ar is close to the lower bound 1.5 when r is closer to 1, that is, when the nominal prior size
m is small compared to k. This explains the phenomena we observed in our simulation studies,
especially the exponential example. This is a rather unexpected finding, especially because of its
simple and general nature, precisely quantifying the super-information as an additional (1 + r)−1

percent of information. The assumption (28) is rather mild because it holds whenever the large-580

sample variance approximation via the Fisher information is appropriate for both likelihood and
Bayesian inferences. As a matter of the fact, for some convolution families under the single
observation unbiased prior (Meng & Zaslavsky, 2002), (28) holds exactly for finite samples as
well, that is, without the need to take k →∞.

More generally, we see from (26) that the super-information phenomenon kicks in as soon585

as ∆2 < 1, and the amount of increased information is monotone in |∆2 − 1|. Similarly, when
∆2 > 1, the amount of the information lost is a monotone increasing function of ∆2 − 1. This
result also says that when |∆2 − 1| is too small, our method will not be able to detect the prior-
likelihood conflict even if it exits because our method can only detect the additional conflict not
already present in the baseline prior, a fact we have demonstrated empirically in Section 4.590

6. LIMITATIONS AND FUTURE WORK

The methods we proposed have many limitations and therefore additional work is needed.
Maybe the most important extension is for problems where sample size is not a good indicator of
information, as is typically the case with time series and spatially dependent data. We obviously
also need to establish theoretical results for scenarios that go beyond those covered in Section 5,595

and more critically to cases where the likelihood itself is misspecified in consequential ways.
In applying our methods, we encountered two practical problems. The first is the computa-

tional demand. Our procedure involves computing some posterior quantities many times, and
hence the overall computational load depends critically on how the posterior calculations are
performed. For example, using conjugate priors, we were able to carry out most of our simula-600

tion studies in less than a minute each on a 2.6 GHz Intel i7 laptop. In contrast, for the application
in Section 4·3, we used the bayesglm package in R, which took closer to an hour. For complex
models, the computational load could become impractical with brute force execution. Therefore
seeking effective computational strategies is an area of much needed research.

The second issue involves instability with small k. We did not encounter any problem for our605

simulation studies, where conjugate priors were used. However, for the lupus nephritis applica-
tion, we had to avoid small k because logistic regressions can be very unstable for small sample
sizes. Any model which has stability problems for small samples can generate similar issues.
We found switching the means to medians in our resampling scheme helped, but obviously this
creates a discrepancy between the application and the current theoretical results, which are mean-610

based, that is, using L2 norm. Extending our theoretical results to cover other norms, especially
L1 norm, as well as more general choices of the discrepancy or uncertainty measureD is another
direction for future research.

Finally, we can explore other methodological applications using the idea of assessing conflict
via monitoring the changes in M(k). For example, we can compare two subjective priors con-615
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structed by two different investigators, and determine whether one is in more serious conflict
with a likelihood function than the other. Going even further, it is possible to extend the idea of
comparing two priors to comparing two likelihood functions, by using a common baseline prior.
If one of the likelihood models is saturated, then the conflict between them can be viewed as the
misspecification of the other, unless we just have very bad luck. Of course, whether we assess 620

prior-likelihood conflict or misspecification of a likelihood, our general message is the same, that
is, to be an informed Bayesian, or more generally, an informed statistical analyst.

7. APPENDIX

7·1. Verifying Theoretical Assumptions and Results
This section presents several prior-likelihood examples that satisfy Assumptions 1-3, and ver- 625

ifies the conclusions given in Section 5. All our examples form conjugate prior-likelihood pairs
with the following exponential forms: Xi has a density of the form

f(x|θ) = exp{T (x)η(θ) + ξ(θ) +B(x)}, (30)

and the prior is a two-parameter conjugate family

g(θ; a, d) = exp {adη(θ) + dξ(θ) + ζ(θ) + C(a, d)} . (31)

As before, letting ~Xn = {X1, . . . , Xn} denote an independent and identically distributed sample
from (30), we then have that the posterior is proportional to 630

p(θ| ~Xn) ∼ exp{(ad+ nT̄ )η(θ) + (d+ n)ξ(θ) + ζ(θ)}

= exp

{(
ad+ nT̄

d+ n

)
(d+ n)η(θ) + (d+ n)ξ(θ) + ζ(θ)

}
,

where T̄ = (1/n)
∑
T (Xi). Therefore

p(θ| ~Xn) = g

(
θ;
ad+ nT̄

d+ n
, d+ n

)
.

This means (20) and (22) hold with m = d and µm = a if for the g(θ; a, d) family we have

E(θ) = u(a) +O(d−1) and Var(θ) =
v(a)

d
+O(d−2), (32)

where u(a) and v(a) satisfy the properties given in Assumption 1. Below we show this is the case 635

for four common applications, where the expressions of posterior means and variances will also
make it transparent that Assumptions 3(i) is a consequence of the strong law of large numbers.
We therefore only need to verify Assumption 3(ii). Note Assumption 2 is a restriction on the
hyper-parameters in our asymptotic regime, and hence it is satisfied whenever we treat the value
∆ = m(µm − µT )2/σ2T as fixed as we let m vary. 640

Exponential
Assume that X1, . . . , Xn are exponential random variables, and hence µX = λ−1 and σ2X =

λ−2. The conjugate prior on λ is the gamma distribution with parameters α and β, Γ(α, β).
The baseline is given by taking (α, β)→ 0, yielding πb(λ) ∼ λ−1, the Jeffreys prior. The corre-
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sponding posteriors are respectively gamma distributions with645

Eπ[λ| ~Xn] =
α+ n

β + nX̄n
, Varπ[λ| ~Xn] =

α+ n

(β + nX̄n)2
; (33)

Eπb [λ| ~Xn] =
1

X̄n
, Varπb [λ| ~Xn] =

1

nX̄2
n

. (34)

It is easy to see from the first expression of (33) that for θ = λ, we should take a = βα−1, d = α,
and T = X . Condition (32) then is satisfied by u(a) = a−1 and v(a) = a−2 exactly without the
O terms because Γ(α, β) has mean and variance αβ−1 and αβ−2, respectively. Assumption 3(ii)650

follows trivially from (34) because it shows that Varπb [λ| ~XÎ ] > 0 for any finite Î . Condition (28)
can also be verified directly from v(µX) = µ−2X = λ2, and [u′(µX)]2σ2X = [−µ−2X ]2σ2X = λ2.

Using the alternative parameterization of the exponential, we can also put a prior directly
on µX . The conjugate family then becomes the inverse gamma, also with parameters α and β.
Denote the baseline parameters as αb and βb. While the parameters update in the same way, the655

mean and variance functions are different:

Eπ[µX | ~Xn] =
β + nX̄n

α+ n− 1
, Varπ[µX | ~Xn] =

(β + nX̄n)2

(α+ n− 1)2(α+ n− 2)
; (35)

Eπb [µX | ~Xn] =
βb + nX̄n

αb + n− 1
, Varπb [µX | ~Xn] =

(βb + nX̄n)2

(αb + n− 1)2(αb + n− 2)
. (36)

We are now left with a more interesting choice for the baseline than in other examples. Taking
βb → 0 seems natural given the other examples, but there is a minor concern with taking αb → 0660

because the baseline variance does not exist for αb ≤ 2 and the baseline mean does not exist
for αb ≤ 1. (But as we mentioned in Section 5, this is not a requirement for Assumption 1 to
hold.) Thus, taking αb → 2 might also be a reasonable baseline. However, in that case the prior
sample size is not α, but α− αb or α− 2. Taking αb → 2 and fixing βb at some finite value
corresponds to a prior on µX which has a relatively small mean and a very large variance. Taking665

the same parametrization for a and d, we have that the mean function is given by ad(d− 1)−1 =
a+O(d−1), and the variance function is given by a2d2[(d− 1)2(d− 2)]−1 = a2d−1 +O(d−2).
Condition (32) is therefore satisfied. Assumption 3(ii) still follows by the same reasoning, while
Condition (28) can be verified from v(µX) = µ2X , and [u′(µX)]2σ2X = σ2X = µ2X .

Bernoulli670

Assume thatX1, . . . , Xn are Bernoulli random variables, and hence µX = p and σ2X = p(1−
p). The conjugate prior on p is the beta distribution with parameters α and β, B(α, β). By taking
α and β to zero, our baseline is π(p) ∝ p−1(1− p)−1. The posteriors are beta distributions with
means and variances

Eπ[p| ~Xn] =
α+ nX̄n

β + α+ n
, Varπ[p| ~Xn] =

(α+ nX̄n)(β + n− nX̄n)

(α+ β + n)2(α+ β + n+ 1)
; (37)675

Eπb [p| ~Xn] = X̄n, Varπb [p| ~Xn] =
X̄n(1− X̄n)

n+ 1
. (38)

As before, (37) implies that we can take a = α(α+ β)−1, d = α+ β, and T = X . We then
see that (32) holds for u(a) = a and v(a) = a(1− a) because B(α, β) has mean a and vari-
ance a(1− a)(d+ 1)−1 = v(a)d−1 − v(a)[d(d+ 1)]−1 = v(a)d−1 +O(d−2).Again Assump-
tion 3(ii) follows from the second expression in (38), excluding the trivial case where all Xs are680

equal. Condition (28) is verified because [u′(µX)]2σ2X = p(1− p) ≡ v(µX).
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Poisson
Assume that X1, . . . Xn are Poisson random variables, and hence µX = σ2X = λ. The conju-

gate prior on λ is the gamma distribution Γ(α, β). The prior and the baseline are therefore the
same as for the exponential, but the posterior means and variances become 685

Eπ[ ~Xn] =
α+ nX̄n

β + n
, Varπ[λ| ~Xn] =

α+ nX̄n

(β + n)2
; (39)

Eπb [λ| ~Xn] = X̄n, Varπb [λ| ~Xn] =
X̄n

n
. (40)

The first expression of (39) tells us to take a = αβ−1, d = β and T = X . Condition (32) then
holds with u(a) = a and v(a) = a because Γ(α, β) has mean αβ−1 and αβ−2. Assumption 3(ii)
follows from the second expression in (40), excluding the pathological case where all Xs are 690

zero. Condition (28) is verified because [u′(µX)]2σ2X = λ = v(µx).

Geometric
Assume that X1, . . . , Xn are geometric random variables, and hence µX = p−1 and σ2x =

p−2(1− p). The conjugate prior for p is the beta distribution as given in the Bernoulli example,
but with the posterior means and variances given by 695

Eπ[p| ~Xn] =
α+ n

α+ β + nX̄n
, Varπ[p| ~Xn] =

(α+ n)(β + nX̄n − n)

(α+ β + nX̄n)2(α+ β + nX̄n + 1)
; (41)

Eπb [p| ~Xn] =
1

X̄n
, Varπb [p| ~Xn] =

X̄n − 1

X̄2
n(nX̄n + 1)

. (42)

The first expression of (41) then tells us to take a = (α+ β)α−1 , d = α, and T = X .
Condition (32) then holds with u(a) = a−1 and v(a) = (a− 1)a−3 because B(α, β) has
mean a−1 and variance a−1(1− a−1)(α+ β + 1)−1 = (a− 1)a−3(d+ a−1)−1 = v(a)d−1 − 700

v(a)[ad(ad+ 1)]−1 = v(a)d−1 +O(d−2). The second expression of (42) shows that Assump-
tion 3(ii) is trivially satisfied other than the pathological case where all Xs are one. Furthermore,
because [u′(µX)]2σ2X = [−p2]2p−2(1− p) = p2(1− p) = v(µX), condition (28) also holds.

7·2. Proofs
We first establish the following lemma needed for proving Theorem 1. For simplicity of nota- 705

tion, we will abbreviate Ûπ,θ0(k) and Ûπb,θ0(k) as Û(k) and Ûb(k) respectively.

LEMMA 1. Suppose k = O(n1/2) and r = k/(m+ k) is strictly between zero and one even
at its limit as n→∞. Then under the Assumptions 1 and 2, we have the following expansion:

Û(k) =
α

k
+Op(k

−3/2), with α = r
{
v(µT ) + σ2T [u′(µT )]2(r + (1− r)∆2)]

}
, (43)

and

Ûb(k) =
β

k
+Op(k

−3/2), where β = v(µT ) + [u′(µT )]2σ2. (44)

Proof. Because k/(m+ k) is strictly between zero and one, k, m and l = k +m are of the 710

same order, hence we can use them exchangeably when using theO notation. Let δk =
√
k(T̄k −

µT ) and dm =
√
m(µm − µT ), then δk is Op(1) by the central limit theorem and dm = σT∆ +

Op(m
−1/2) by Assumption 2, and hence

δk,m ≡ Tk,m − µT = l−1/2[
√
rδk +

√
1− rdm] = Op(k

−1/2). (45)



22

Consequently v(Tk,m)− v(µT ) = Op(k
−1/2) by a one-term Taylor expansion. Assumption 1

then allows us to write715

Varπ[θ| ~Xk] =
v(µT )

k
r +Op(k

−3/2). (46)

For the bias term B = Eπ(θ| ~Xk)− Eπb(θ| ~Xn), we expand u(Tk,m) in (20) around µT to obtain

Eπ(θ| ~Xk) = u(µT ) + u′(µT )δk,m +Op(k
−1); Eπb(θ| ~Xn) = u(µT ) +Op(n

−1/2). (47)

Only one term expansion of Eπb(θ| ~Xn) is needed because OP (n−1/2) = Op(k
−1) under our

assumption. Consequently, we have

B2 =
[
u′(µT )δk,m +Op(k

−1)
]2

= [u′(µT )]2δ2k,m +Op(k
−3/2). (48)

But

δ2k,m = l−1[
√
rδk +

√
1− rdm]2 = l−1[rδ2k + 2

√
r(1− r)δkdm + (1− r)d2m]. (49)

From (46) and (48), we see that when we take a bootstrap sample of D̂ of (8) to obtain (6), to an720

error order of Op(k−3/2), it amounts to replacing the δik ≡ δik( ~Xk) term in (49) by its bootstrap
average δ̂ik (i = 1, 2), which is defined similarly as in (6). Because δ̂k =

√
k(T̄n − µT ), it differs

from its mean, that is, zero, by an order of
√
kOp(n

−1/2) = Op(k
−1/2). Hence the middle term

on the most right hand side of (49) can be dropped without introducing more than an error of
order l−1Op(k−1/2) = Op(k

−3/2), which is of the same order as the error term in (46) or in (48).725

For the δ̂2k term, we will need to use some standard results for U-statistics (e.g., see Ch. 3
of Lee (1990)). Let h(X1, . . . , Xk) = (X1 + . . .+Xk)

2/k. Then δ̂2k is exactly the U-statistics
generated by the kernel h, with Xi = Ti − µT . Therefore it is known that

Var(δ̂2k) ≤
k

n
Var[h(X1, . . . , Xk)] =

k

n
σ4T (2 +

κT
k

), (50)

where κT is the kurtosis of Ti. This implies that asymptotically the δ̂2k − E[δ̂2k] is controlled
by the order Op((k/n)1/2) = Op(k

−1/2). Therefore, as before, replacing δ̂2k by E[δ̂2k] = σ2T in730

(49) introduces an error of order controlled by l−1Op(k−1/2) = Op(k
−3/2), no more than what

is already permitted by (46) or (48). Expansion (43) then follows because from Assumption 2,
l−1d2m = l−1[σ2T∆2 +O(m−1/2)] = l−1σ2T∆2 +O(k−3/2).

The derivation above clearly is valid when we start it by setting m = 0, and hence r = 1 and
δk,m ≡ δk (and then ∆ is immaterial), but this is exactly the proof needed for establishing (44).�735

We are now ready to prove Theorem 1. Let R(k) = M(k)/k, then by Lemma 1, expression
(25) is equivalent to

[1 +R(k)][α+Op(k
−1/2))] = [1 +Op(k

−1/2)][β + [1 +R(k)]−1/2Op(k
−1/2)]. (51)

We can then verify directly that (51) is equivalent to (24) as long as R(k) + 1 stays away from
zero almost surely in its limit, that is, lim infk→∞[R(k) + 1] > 0 almost surely, since otherwise
we cannot write [1 +R(k)]−1/2Op(k

−1/2) = Op(k
−1/2), which is needed for the equivalence.740

Now it is easy to see that when R(k) is given by (24) itself, then lim infk→∞[R(k) + 1] > 0
holds almost surely. This is because otherwise with positive probability, say p > 0, there ex-
ists a subsequence {ki, i ≥ 1} such that ki →∞ and 1 +R(ki)→ 0. But 1 +R(ki) = 1 +
Rri(∆

2) + εi, where ri = ki/(ki +m) and
√
kiεi = Op(1). Consequently we know with prob-

ability p > 0, εi converges to −(1 +Rr∞(∆2)) < 0, where r∞ = limi→∞ ri. Therefore, with745
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probability p, |εi| will be bounded away from zero when i is large enough, hence it is impossible
for
√
ki|εi| to be bounded away from infinity as ki goes to infinity. This contradicts the fact that√

kiεi = Op(1). This proves that (24) is the solution to (25).
To prove that any solution to (25) must take the form (24), we will need the additional reg-

ularity condition Assumption 3. Again we prove this by contradiction, by assuming with prob- 750

ability p > 0, the subsequence {ki, i ≥ 1} defined above exists. Then for such subsequences
the left hand side of (51) goes to zero. But the right hand side can have the zero limit only
if
√
ki +M(ki) = −εi/β, where εi = Op(1). This means with positive probability (possi-

bly smaller than p), Î = lim supi→∞[ki +M(ki)] is finite. Hence with a positive probabil-
ity lim infk→∞ Ûb(k +M(k)) > 0 under Assumption 3(ii) because Pr(Ub(Î) > 0) ≥ Pr(Î < 755

∞) > 0. But this contradicts (25) because its left hand side then will go to zero with a positive
probability, yet its right hand side will go to 1 with probability one for the same reason as in the
previous paragraph.
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