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generates one vector of posterior simulations of all the uncertain quantities in
the model.

9.3 Model evaluation

Despite our best efforts to include information, all models are approximate.
Hence, checking the fit of a model to data and prior assumptions is always
important. For the purpose of model evaluation, we can think of the infer-
ential step of Bayesian data analysis as a sophisticated way to explore all
the implications of a proposed model, in such a way that these implications
can be compared with observed data and other knowledge not included in
the model. For example, Section 6.4 illustrates graphical predictive checks for
models fitted to data for two different problems in psychological research. In
each case, the fitted model captures a general pattern of the data but misses
some key features. In the second example, finding the model failure leads to
a model improvement—a mixture distribution for the patient and symptom
parameters—that better fits the data, as seen in Figure 6.9.

Posterior inferences can often be summarized graphically. For simple prob-
lems or one or two-dimensional summaries, we can plot a histogram or scat-
terplot of posterior simulations, as in Figures 3.3, 3.4, and 5.8. For larger
problems, summary graphs such as Figures 5.4–5.7 are useful. Plots of several
independently derived inferences are useful in summarizing results so far and
suggesting future model improvements. We illustrate in Figure 14.2 with a se-
ries of regression estimates of the advantage of incumbency in Congressional
elections.

Graphs (or even maps, as in Figure 6.1) are also useful for model checking
and sensitivity analysis, as we have shown in Chapter 6 and further illustrate
in many of the examples in Sections IV and V.

When checking a model, one must keep in mind the purposes for which it
will be used. For example, the normal model for football scores in Section 1.6
accurately predicts the probability of a win, but gives poor predictions for the
probability that a game is exactly tied (see Figure 1.1).

It is also important to understand the limitations of automatic Bayesian
inference. Even a model that fits observed data well can yield poor inferences
about some quantities of interest. It is surprising and instructive to see the pit-
falls that can arise when models are automatically applied and not subjected
to model checks.

Example. Estimating a population total under simple random sampling
using transformed normal models
We consider the problem of estimating the total population of the N = 804
municipalities in New York State in 1960 from a simple random sample of n =
100—an artificial example, but one that illustrates the role of model checking in
avoiding seriously wrong inferences. Table 9.2 presents summary statistics for the
population of this ‘survey’ along with two simple random samples (which were
the first and only ones chosen). With knowledge of the population, neither sample
appears particularly atypical; sample 1 is very representative of the population
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Population Sample 1 Sample 2
(N = 804) (n = 100) (n = 100)

total 13,776,663 1,966,745 3,850,502
mean 17,135 19,667 38,505
sd 139,147 142,218 228,625
lowest 19 164 162
5% 336 308 315
25% 800 891 863
median 1,668 2,081 1,740
75% 5,050 6,049 5,239
95% 30,295 25,130 41,718
highest 2,627,319 1,424,815 1,809,578

Table 9.2 Summary statistics for populations of municipalities in New York State
in 1960 (New York City was represented by its five boroughs); all 804 municipalities
and two independent simple random samples of 100. From Rubin (1983a).

according to the summary statistics provided, whereas sample 2 has a few too
many large values. Consequently, it might at first glance seem straightforward to
estimate the population total, perhaps overestimating the total from the second
sample.

Sample 1: initial analysis. We begin the data analysis by trying to estimate
the population total from sample 1 assuming that the N values in the population
were drawn from a N(µ, σ2) superpopulation, with a uniform prior density on
(µ, log σ). In the notation of Chapter 7, we wish to estimate the finite-population
quantity,

ytotal = Ny = nyobs + (N − n)ymis. (9.1)

As discussed in Section 7.4, under this model, the posterior distribution of y is
tn−1(yobs, (

1
n − 1

N )s2
obs). Using the data from the second column of Table 9.2

and the tabulated Student-t distribution, we obtain the following 95% posterior
interval for ytotal: [−5.4 × 106, 37.0 × 106]. The practical person examining this
95% interval might find the upper limit useful and simply replace the lower limit
by the total in the sample, since the total in the population can be no less. This
procedure gives a 95% interval estimate of [2.0 × 106, 37.0 × 106].

Surely, modestly intelligent use of statistical models should produce a better
answer because, as we can see in Table 9.2, both the population and sample 1 are
very far from normal, and the standard interval is most appropriate with normal
populations. Moreover, all values in the population are known to be positive.
Even before seeing any data, we know that sizes of municipalities are far more
likely to have a normal distribution on the logarithmic than on the untransformed
scale.

We repeat the above analysis under the assumption that the N = 804 values
in the complete data follow a lognormal distribution: log yi ∼ N(µ, σ2), with a
uniform prior distribution on (µ, log σ). Posterior inference for ytotal is performed
in the usual manner: drawing (µ, σ) from their posterior (normal-inverse-χ2) dis-
tribution, then drawing ymis|µ, σ from the predictive distribution, and finally
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calculating ytotal from (9.1). Based on 100 simulation draws, the 95% interval for
ytotal is [5.4 × 106, 9.9 × 106]. This interval is narrower than the original interval
and at first glance looks like an improvement.

Sample 1: checking the lognormal model. One of our major principles is to
apply posterior predictive checks to models before accepting them. Because we
are interested in a population total, ytotal, we apply a posterior predictive check
using, as a test statistic, the total in the sample, T (yobs) =

∑n
i=1

yobs i. Using
our L = 100 sample draws of (µ, σ2) from the posterior distribution under the
lognormal model, we obtain posterior predictive simulations of L independent
replicated datasets, yrep

obs, and compute T (yrep
obs) =

∑n
i=1

yrep
obs i for each. The result

is that, for this predictive quantity, the lognormal model is unacceptable: all of the
L = 100 simulated values are lower than the actual total in the sample, 1,966,745.

Sample 1: extended analysis. A natural generalization beyond the lognormal
model for municipality sizes is the power-transformed normal family, which adds
an additional parameter, φ, to the model; see (6.14) on page 195 for details.
The values φ = 1 and 0 correspond to the untransformed normal and lognormal
models, respectively, and other values correspond to other transformations.

To fit a transformed normal family to data yobs, the easiest computational ap-
proach is to fit the normal model to transformed data at several values of φ and
then compute the marginal posterior density of φ. Using the data from sample
1, the marginal posterior density of φ is strongly peaked around the value −1/8
(assuming a uniform prior distribution for φ, which is reasonable given the rela-
tively informative likelihood). Based on 100 simulated values under the extended
model, the 95% interval for ytotal is [5.8 × 106, 31.8 × 106]. With respect to the
posterior predictive check, 15 out of 100 simulated replications of the sample total
are larger than the actual sample total; the model fits adequately in this sense.

Perhaps we have learned how to apply Bayesian methods successfully to estimate
a population total with this sort of data: use a power-transformed family and
summarize inference by simulation draws. But we did not conduct a very rigorous
test of this conjecture. We started with the log transformation and obtained an
inference that initially looked respectable, but we saw that the posterior predictive
check distribution indicated a lack of fit in the model with respect to predicting
the sample total. We then enlarged the family of transformations and performed
inference under the larger model (or, equivalently in this case, found the best-
fitting transformation, since the transformation power was so precisely estimated
by the data). The extended procedure seemed to work in the sense that the
resultant 95% interval was plausible; moreover, the posterior predictive check on
the sample total was acceptable. To check on this extended procedure, we try it
on the second random sample of 100.

Sample 2. The standard normal-based inference for the population total from
the second sample yields a 95% interval of [−3.4 × 106, 65.3 × 106]. Substituting
the sample total for the lower limit gives the wide interval of [3.9×106 , 65.3×106 ].

Following the steps used on sample 1, modeling the sample 2 data as lognormal
leads to a 95% interval for ytotal of [8.2×106, 19.6×106]. The lognormal inference
is quite tight. However, in the posterior predictive check for sample 2 with the
lognormal model, none of 100 simulations of the sample total was as large as
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the observed sample total, and so once again we find this model unsuited for
estimation of the population total.

Based upon our experience with sample 1, and the posterior predictive checks
under the lognormal models for both samples, we should not trust the lognormal
interval and instead should consider the general power family, which includes the
lognormal as a special case. For sample 2, the marginal posterior distribution for
the power parameter φ is strongly peaked at −1/4. The posterior predictive check
generated 48 of 100 sample totals larger than the observed total—no indication
of any problems, at least if we do not examine the specific values being generated.

In this example we have the luxury of knowing the correct example (corresponding
to having complete data rather than a sample of 100 municipalities). Unfortu-
nately, the inference for the population total under the power family turns out to
be, from a substantive standpoint, atrocious: for example, the median of the 100
generated values of ytotal is 57 × 107, the 97th value is 14× 1015, and the largest
value generated is 12 × 1017.

Need to specify crucial prior information. What is going on? How can the
inferences for the population total in sample 2 be so much less realistic with a
better-fitting model (that is, assuming a normal distribution for y−1/4

i ) than with
a worse-fitting model (that is, assuming a normal distribution for log yi)?

The problem with the inferences in this example is not an inability of the mod-
els to fit the data, but an inherent inability of the data to distinguish between
alternative models that have very different implications for estimation of the pop-
ulation total, ytotal. Estimates of ytotal depend strongly on the upper extreme of
the distribution of municipality sizes, but as we fit models like the power family,
the right tail of these models (especially beyond the 99.5% quantile), is being af-
fected dramatically by changes governed by the fit of the model to the main body
of the data (between the 0.5% and 99.5% quantiles). The inference for ytotal is ac-
tually critically dependent upon tail behavior beyond the quantile corresponding
to the largest observed yobs i. In order to estimate the total (or the mean), not
only do we need a model that reasonably fits the observed data, but we also need
a model that provides realistic extrapolations beyond the region of the data. For
such extrapolations, we must rely on prior assumptions, such as specification of
the largest possible size of a municipality.

More explicitly, for our two samples, the three parameters of the power family
are basically enough to provide a reasonable fit to the observed data. But in
order to obtain realistic inferences for the population of New York State from
a simple random sample of size 100, we must constrain the distribution of large
municipalities. We were warned, in fact, by the specific values of the posterior
simulations for the sample total from sample 2: 10 of the 100 simulations for the
replicated sample total were larger than 300 million!

The substantive knowledge that is used to criticize the power-transformed normal
model can also be used to improve the model. Suppose we know that no single
municipality has population greater than 5×106. To incorporate this information
as part of the model we simply draw posterior simulations in the same way
as before but truncate municipality sizes to lie below that upper bound. The
resulting posterior inferences for total population size are quite reasonable. For
both samples, the inferences for ytotal under the power family are tighter than
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with the untruncated models and are realistic. The 95% intervals under samples
1 and 2 are [6× 106, 20 × 106] and [10× 106, 34× 106], respectively. Incidentally,
the true population total is 13.7 · 106 (see Table 9.2), which is included in both
intervals.

Why does the untransformed normal model work reasonably well for esti-
mating the population total? Interestingly, the inferences for ytotal based on
the simple untransformed normal model for yi are not terrible, even without sup-
plying an upper bound for municipality size. Why? The estimate for ytotal under
the normal model is essentially based only on the assumed normal sampling dis-
tribution for yobs and the corresponding χ2 sampling distribution for s2

obs. In
order to believe that these sampling distributions are approximately valid, we
need the central limit theorem to apply, which we achieve by implicitly bounding
the upper tail of the distribution for yi enough to make approximate normality
work for a sample size of 100. This is not to suggest that we recommend the un-
transformed normal model for clearly nonnormal data; in the example considered
here, the bounded power-transformed family makes more efficient use of the data.
In addition, the untransformed normal model gives extremely poor inferences for
estimands such as the population median. In general, a Bayesian analysis that
limits large values of yi must do so explicitly.

Well-designed samples or robust questions obviate the need for strong prior
information. Of course, extensive modeling and simulation are not needed to
estimate totals routinely in practice. Good survey practitioners know that a sim-
ple random sample is not a good survey design for estimating the total in a highly
skewed population. If stratification variables were available, one would prefer to
oversample the large municipalities (for example, sample all five boroughs of New
York City, a large proportion of cities, and a smaller proportion of towns).

Inference for the population median. It should not be overlooked, however,
that the simple random samples we drew, although not ideal for estimating the
population total, are quite satisfactory for answering many questions without
imposing strong prior restrictions.

For example, consider inference for the median size of the 804 municipalities. Us-
ing the data from sample 1, the simulated 95% posterior intervals for the median
municipality size under the three models: (a) lognormal, (b) power-transformed
normal family, and (c) power-transformed normal family truncated at 5×106, are
[1800, 3000], [1600, 2700], and [1600, 2700], respectively. The comparable intervals
based on sample 2 are [1700, 3600], [1300, 2400], and [1200, 2400]. In general, bet-
ter models tend to give better answers, but for questions that are robust with
respect to the data at hand, such as estimating the median from our simple
random sample of size 100, the effect is rather weak. For such questions, prior
constraints are not extremely critical and even relatively inflexible models can
provide satisfactory answers. Moreover, the posterior predictive checks for the
sample median looked fine—with the observed sample median near the middle of
the distribution of simulated sample medians—for all these models (but not for
the untransformed normal model).

What general lessons have we learned from considering this example? The
first two messages are specific to the example and address accuracy of resultant
inferences for covering the true population total.
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1. The lognormal model may yield inaccurate inferences for the population
total even when it appears to fit observed data fairly well.

2. Extending the lognormal family to a larger, and so better-fitting, model
such as the power transformation family, may lead to less realistic inferences
for the population total.

These two points are not criticisms of the lognormal distribution or power
transformations. Rather, they provide warnings to be heeded when using a
model that has not been subjected to posterior predictive checks (for test
variables relevant to the estimands of interest) and reality checks. In this con-
text, the naive statement, ‘better fits to data mean better models which in
turn mean better real-world answers,’ is not necessarily true. Statistical an-
swers rely on prior assumptions as well as data, and better real-world answers
generally require models that incorporate more realistic prior assumptions
(such as bounds on municipality sizes) as well as provide better fits to data.
This comment naturally leads to a general message encompassing the first two
points.

3. In general, inferences may be sensitive to features of the underlying distri-
bution of values in the population that cannot be addressed by the observed
data. Consequently, for good statistical answers, we not only need models
that fit observed data, but we also need:

(a) flexibility in these models to allow specification of realistic underlying
features not adequately addressed by observed data, such as behavior in
the extreme tails of the distribution, or

(b) questions that are robust for the type of data collected, in the sense
that all relevant underlying features of population values are adequately
addressed by the observed values.

Finding models that satisfy (a) is a more general approach than finding
questions that satisfy (b) because statisticians are often presented with hard
questions that require answers of some sort, and do not have the luxury of
posing easy (that is, robust) questions in their place. For example, for environ-
mental reasons it may be important to estimate the total amount of pollutant
being emitted by a manufacturing plant using samples of the soil from the
surrounding geographical area, or, for purposes of budgeting a health-care in-
surance program, it may be necessary to estimate the total amount of medical
expenses from a sample of patients. Such questions are inherently nonrobust in
that their answers depend on the behavior in the extreme tails of the underly-
ing distributions. Estimating more robust population characteristics, such as
the median amount of pollutant in soil samples or the median medical expense
for patients, does not address the essential questions in such examples.

Relevant inferential tools, whether Bayesian or non-Bayesian, cannot be
free of assumptions. Robustness of Bayesian inference is a joint property of
data, prior knowledge, and questions under consideration. For many prob-
lems, statisticians may be able to define the questions being studied so as to


