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I GOT MORE DATA, MY MODEL IS MORE REFINED,
BUT MY ESTIMATOR IS GETTING WORSE!

AM I JUST DUMB?

By Xiao-Li Meng and Xianchao Xie

Harvard University

Possibly, but more likely you are merely a victim of conventional
wisdom. More data or better models by no means guarantee better
estimators (e.g., with a smaller mean squared error), when you are
not following probabilistically principled methods such as MLE (for
large samples) or Bayesian approaches. Estimating equations are par-
ticularly vulnerable in this regard, almost a necessary price for their
robustness. These points will be demonstrated via common tasks of
estimating regression parameters and correlations, under simple mod-
els such as bivariate normal and ARCH(1). Some general strategies
for detecting and avoiding such pitfalls are suggested, including check-
ing for self-efficiency (Meng, 1994, Statistical Science) and adopting
a guiding working model.

Using the example of estimating the autocorrelation ρ under a sta-
tionary AR(1) model, we also demonstrate the interaction between
model assumptions and observation structures in seeking additional
information, as the sampling interval s increases. Furthermore, for a
given sample size, the optimal s for minimizing the asymptotic vari-
ance of ρ̂MLE is s = 1 if and only if ρ2 ≤ 1/3; beyond that region the
optimal s increases at the rate of log−1(ρ−2) as ρ approaches a unit
root, as does the gain in efficiency relative to using s = 1. A practical
implication of this result is that the so-called “non-informative” Jef-
freys prior can be far from non-informative even for stationary time
series models, because here it converges rapidly to a point mass at a
unit root as s increases. Our overall emphasis is that intuition and
conventional wisdom need to be examined via critical thinking and
theoretical verification before they can be trusted fully.

Keywords and phrases: AR(1) model, Estimating equation, Fraction of missing infor-
mation, Fisher information, Generalized method of moments (GMM),, Jeffreys prior,
Non-informative prior, Partial plug-in, Observation structures, Relative information, Self-
efficiency, Unit root.
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2 MENG AND XIE

1. What Does Information Really Mean?. Information is a buzz-
word in the information age. To the general public, information is a buzzword
because it is interwoven into every fabric of our lives—it is now nearly im-
possible to find a “digital information free zone”. To those of us who study
or use information as a quantitative measure, it is a buzzword because we
have trouble quantifying it generally enough so that its technical meaning
would match its daily usage with appreciable accuracy. But nevertheless we
continue trying.

In the context of statistical analysis, the technical meaning of information
often is directly linked to the amount of data we have and to a measure
of the quality (e.g., confidence coverage, testing power) of our inferential
conclusions. An insightful reader may already be troubled by an undertone
in the previous sentence: the more data we have, the more information and
hence the higher quality of our statistical findings. As a matter of fact, this
seemingly trivially logical intuition is false, because more data lead to better
conclusions only when we know how to take advantage of their information.
In other words, size does matter, but only if it is used appropriately.

Here is a simple example taken from Xie and Meng (2012). We have a se-
quence of 100 (time ordered) observations from a heteroscedastic regression
model

(1.1) Yt = βXt + εt, εt
indep.∼ N(0, X2

t ), t = 1, . . . , n.

The ordinary least squares (OLS) estimator for β enjoys a celebrated ro-
bustness, that is, it is consistent even in the presence of heteroscedasticity,
and its variance can be consistently estimated via the usual “sandwich esti-
mator”. Much less well known, however, is the fact that as a necessary price
for this robustness, OLS is not self-efficient (Meng, 1994), because it can
yield a more accurate estimator with less data.

For instance, in the above example, if Xt = (101 − t)−1, then using the
first 64 observations will lead to the variance of OLS V OLS

1:64 = 0.0214, yet
if we use all our observations, V OLS

1:100 = 0.4049. That is, by adding about
1/3 of the data, we end up inflating the variance almost 19 times instead
of reducing it. In other words, if we measure how much more information is
gained by having the additional 36 observations (that happen to be the last
36 observations), we will have to conclude that there is actually a tremendous
loss—or very negative gain—of information for OLS.

In contrast, if we use the maximum likelihood estimator (MLE), which for
the current case amounts to a weighted least squares estimator with weight
Wt = X−1

t , its variance becomes n−1 if we use the first n observations;
consequently, for example, doubling n will cut its variance by half, as we
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3

normally expect. Intuitively, the failure of OLS is due to its equal weighting:
putting those observations with very large variances on equal footing with
those with very small ones. If the added observations are from those with
larger variances, the noise they bring in can easily outweigh the gain in
sample size. This is very much like diversification. It can be a sound strategy
for constructing low risk portfolios, but simply allocating an equal amount
share of a new stock can greatly increase the risk of the portfolio if the new
stock is sufficiently volatile. The MLE properly weights observations so the
amount of noise each of them can bring in is equalized, and hence the size
of the weighted sample is proportional to the amount of information being
accumulated.

This somewhat dramatic numerical illustration is chosen to highlight the
fact that the conventional wisdom “more data imply better estimators” can
be trusted only under further qualifications. The time trend in the variance
function of (1.1) may seem to be artificial to a casual reader, but it is a com-
mon phenomenon in time series analysis, especially with ARCH/GARCH
type of models, as we shall detail in Section 2 via a simple ARCH model.
Using the same model, Section 3 provides an overview of the aforementioned
concept of self-efficiency, which requires more than merely ensuring decreas-
ing in uncertainty (e.g., variance) as we have more data (and hence we delay
its discussion after presenting the simpler case in Section 2). We emphasize
here that this is merely one of many approaches (and information measures)
for studying such problems. As one of many examples, Abel and Singpur-
walla (1994) and Ebrahami, Soofi and Soyer (2012) used the entropy to
study whether one prefers to observe more failures than survivals in survival
models. Also see Ebrahami, Soofi and Soyer (2010) for an excellent overview
and investigation of measuring mutual information for estimation and for
prediction.

In Section 4, we review how to define, calculate and interpret relative
information in the context of MLE, where by relative information we mean
relative gain by making additional assumptions. We use the problem of es-
timating correlation to illustrate why great caution is needed to leverage
additional information when we are not using a principled procedure such
as MLE or Bayesian methods. Section 5 then carries out the information cal-
culations in the context of time series data with conditionally normal errors.
The calculation re-confirms how the MLE approach sensibly accumulates
information as we add more assumptions and/or more observations. This
detailed re-examination of the power of the MLE approach also suggests a
general strategy for incorporating additional information when estimating
equations are employed for dependent data where only the first two condi-
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4 MENG AND XIE

tional moments are specified. Section 6 then applies the results in Section 5
to the simple AR(1) model, which in particular leads to the result on how
the Fisher information depends on the sampling intervals, as summarized in
the Abstract.

We doubt any technical results reported in this paper have not been noted
previously, given they are based on rather standard calculations, despite the
fact that we have not been able to locate a reference for the aforemen-
tioned sampling interval results. (We nevertheless note that these results
are derived from the parameter estimation perspective, not from the usual
signal recovering perspective underlying the well-known Nyquist-Shannon
sampling theorem; see Nyquist, 1928 and Unser, 2000). We do, however,
emphasize that the key theoretical insights these results convey have not
received the general attention they deserve, because they have direct prac-
tical implications and can help to guide practitioners to use their resources
for data collection and analysis in a more economical way. As raising the
general awareness of such issues is the main purpose of our article, we con-
clude in Section 7 with a brief discussion on how the sampling results help
to clarify a common mis-perception that the Jeffreys prior is “safe” to use
because it comes with the label of being “non-informative”. Whereas there
are many theoretical, practical or even philosophical reasons to adopt a Jef-
freys prior, a topic about which one can learn much from Professor Arnold
Zellner’s writing1, its “non-informative” label is generally misleading. As we
will show, as the sampling interval increases, the Jeffreys prior will converge
to a point mass at a unit root, hardly non-informative by any measure.

2. Do Additional (Correct) Data Always Help?. The answer is
clearly no from the simple example in Section 1. Here we use the well-known
ARCH(1) regression model to further illustrate this point.

Let {Yt, t = 1, . . . , T} represent the entire time series within a given finite-
time horizon T , for which we believe a single (parametric) model is adequate.
That is, we do not consider the process starting from a hypothetical infinite
past, but rather from a fixed time, which will be labelled as the origin of the
process t = 0, with a fixed but potentially unknown value Y0. For simplicity
of algebra, let us assume that the model we adopt is the simplest ARCH
regression model with a single predictor (Engle, 1982):

(2.1) Yt|Ft−1 ∼ N(Xtβ, τ2
t ), t = 1, . . . , T

where Ft−1 is the σ-field generated by {Y1, . . . , Yt−1}, with F0 being defined
1See his CV at http://faculty.chicagobooth.edu/arnold.zellner/more/vita.pdf
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5

as the trivial σ field, and the conditional variance

(2.2) τ2
t ≡ α0 + α1ε

2
t−1, where εt−1 = Yt−1 −Xt−1β,

with α0 > 0 and α1 ≥ 0. Here, we consider ε0 ≡ Y0 (i.e., we assume X0 = 0)
to be an unknown fixed parameter. [It is known that, although ARCH(1) is
not an AR process, the squared process {ε2t , t = 1, . . . , } can be viewed as
an AR(1) process in a general sense; see Bollerslev (1986).]

Suppose we observe only Zobs = {Yt1 , . . . , Ytn}, where n is the size of
the data and 1 ≤ t1 ≤ tn ≤ T . It is well-known that, conditioning on the
(observed) Xt’s, OLS estimator

(2.3) β̂t1:tn =
∑n

j=1 YtjXtj∑n
j=1 X2

tj

is unbiased for β regardless of the values of α0 and α1. Its variance is given
by

(2.4) Vt1:tn =

∑n
j=1 σ2

tjX
2
tj

[
∑n

j=1 X2
tj ]

2
,

where σ2
t is the marginal variance of Yt given by

(2.5) σ2
t = Y 2

0 αt
1 + α0

t−1∑

j=0

αj
1, for t ≥ 1,

with σ2
0 defined as Y 2

0 . Note in deriving (2.5) we have used the fact that,
conditioning on Xt’s, Yt and Ys are un-correlated whenever t 6= s even though
they are not independent.

Because of the dependence of σ2
t on t, we see that Vt1:tn is not necessarily

a monotonic decreasing function of the size n even when all the Xt’s are
equal, that is, even when we simply estimate the mean of Yt and hence ignore
the variations among Xt’s. As a matter of the fact, it can be a monotonic
increasing function, indicating that we would be worse off with more data,
if we were seduced by OLS for its simplicity and robustness. Indeed, Engle
(1982) pointed out the potential of 100% loss of efficiency by OLS compared
to MLE as α1 ↑ 1. (See also Pantula, 1988, for comparisons of MLE, OLS,
and a generalized least squared estimator.) The condition α1 < 1 was needed
in Engle (1982) to ensure finite variance because he was considering the
ARCH process with an infinite time horizon, a condition that is unnecessary
when we restrict ourselves to a finite time horizon. However, our finite-time
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6 MENG AND XIE

horizon formulation permitting α1 = 1 provides an insight of why OLS will
lose efficiency completely as α1 ↑ 1, as shown below.

To see this clearly, we notice that when {t1, . . . , tn} forms a consecutive
sequence and Xt = 1 for all t, (2.4) becomes

(2.6) Vt1:tn =





1
n

α0
1−α1

+ α
t1
1

n2

(
Y 2

0 + α0
α1−1

)
αn

1−1
α1−1 , if α1 6= 1;

1
n

[
Y 2

0 + α0
t1+tn

2

]
, if α1 = 1.

From (2.6), we observe several facts. First and trivially, if we let both t1 and
tn go to infinity, that is, when we invoke the infinite time horizon formulation,
then we recover the well-known result (Engle, 1982) that the process is
stationary and has variance σ2 = α0/(1 − α1) (and hence Vt1:tn = σ2/n) if
and only if α1 < 1. Second, for a finite t1 and tn, Vt1:tn is affected by both
the data size n and the beginning and ending times of observation: t1 and
tn. The initial value Y0 can also have very large impact as long as α1 ≥ 1.

Third, for a fixed t1, when α1 > 1, we see that as long as n is larger
than a small (often very small) threshold, Vt1:tn is a monotone increasing
function of n, implying that as we increase the sample size, OLS becomes
progressively worse, with (essentially) an exponential rate αn

1/n2 approach-
ing infinity. Note this explosive nature of the model often makes it unsuitable
for modeling financial data (e.g., Tsay, 2001), but nevertheless we include
it here both for completeness and for illustrating the possibility that the
variance of a seemingly appropriate estimator can increase with the data
size at an arbitrarily fast rate if one is not using a principled method such
as MLE.

The more interesting and relevant case is when α1 = 1. In such case,
Vt1:tn is a monotone decreasing function of n for fixed t1, but it does not
converge to zero as n → ∞; rather, it converges to α0/2. Therefore, with
an increase of the data size, β̂t1:tn fails to converge to the true β because it
does not appropriately utilize information in the data, resulting in a total
loss of information compared to MLE as α1 ↑ 1.

We emphasize here that, although we have invoked a finite-time horizon
setup, taking limits such as n →∞ is still relevant both as a mathematical
tool for approximation and for gaining theoretical insight. For example, one
may question if there is any estimator of β that can have vanishing variance
(i.e., converging in L2) as n grows without limit, which would indicate that
there is a complete loss of information by OLS. The answer is yes because
the inverse t weighted estimator

(2.7) β̂n =
∑n

t=1 Yt/t∑n
t=1 1/t
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is unbiased and has variance

(2.8) Var(β̂n) =
Y 2

0 H
(2)
n

[H(1)
n ]2

+
α0

H
(1)
n

, where H(i)
n =

n∑

t=1

t−i, i = 1, 2.

Since H
(2)
∞ = π2/6 but the harmonic series H

(1)
n goes to infinity as log(n)

does, we know that Var(β̂n) converges to zero at the rate of log−1(n).
Whereas this is a very slow rate, it nevertheless establishes the existence
of perfect information accumulation in the sense of eliminating uncertainty
eventually, in contrast to OLS, which will still have variance α0/2 even if we
have an infinite amount of data. In the next section, we will prove that OLS
fails to be self-efficient asymptotically when α1 ≥ 1 (the case for α1 > 1 of
course is obvious), which is a stronger indication of its improper extraction
of information from the available data.

3. What is Self-Efficiency?. The general notion of self-efficiency was
introduced in Meng (1994), in the context of investigating the consistency
of Rubin’s (1987) variance combining rule for multiple imputation inference.
The following (refined) definition is from Xie and Meng (2012).

Definition 1. Let Zcom be a data set and Zobs be a subset of Zcom

created by a selection mechanism. A statistical estimation procedure θ̂(·) for
θ is said to be self-efficient (with respect to the selection mechanism) if for
any (constant) λ ∈ (−∞,∞), θ̂com dominates λθ̂obs + (1 − λ)θ̂com in terms
of the mean squared error (MSE), where θ̂com = θ̂(Zcom) and θ̂obs = θ̂(Zobs).

In a nutshell, self-efficiency eliminates any procedure that can be improved
upon by “bootstrapping”, in its original (non-technical) meaning. Imagine
the following scenario. A user of an estimation procedure applies it to all the
data he has and obtains θ̂full. Upon calculating its variance, the user finds
that the variance of θ̂full is too large to be acceptable. He has no new data
nor any new prior information that can help him. However, he discovers
that he can improve upon θ̂full by first applying the same procedure to
a subset of the data to obtain θ̂part, and then forming a weighted average
θ̂λ = λθ̂part+(1−λ)θ̂full for some λ. Regardless of how he chooses the subset
or λ, the fact that θ̂λ can beat θ̂full means that the original procedure he
adopts is not efficient even with respect to itself (given the information he
has, which can be reflected in his choice of subset or λ), because it allows
itself to be improved upon applying it to a subset of the data after it has
already been applied to the full data set. We remark here that in principle
θ̂part and θ̂full can be combined in any way; we restricted ourselves to linear
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8 MENG AND XIE

combinations mainly because typically we apply the notion asymptotically,
for which linear combinations suffice. See also Xie and Meng (2012) for a
discussion on how self-efficiency is a special case of strong efficiency, which
itself is closely related to Rao-Blackwellization.

To illustrate why the self-efficiency is a stronger requirement than only
requiring the MSE to be non-increasing as we increase sample size, consider
the simple example in Section 1. Given the nature of increasing variances
over time, one may wonder whether the issue of “self-inefficiency” is avoided
if the selection mechanism always takes the last (say) 64 observations (even
though one clearly should avoid as much as possible any mechanism that
selects the worst n observations!). Indeed this will lead to V OLS

37:100 = 0.4076 >
V OLS

1:100 = 0.4049. (The proximity of these two variances also reminds us how
OLS is dominated by those observations with larger variability). However,
this fact does not imply that OLS is self-efficient with respect to the specified
selection mechanism. This is because we can still find a linear combination
of the complete-data OLS and the observed-data OLS that enjoys a smaller
variance. For example, let β̂λ = λ · β̂OLS

37:100 + (1 − λ) · β̂OLS
1−100 and choose

1− λ = 274.5, we have V (β̂λ) = 0.0276, much smaller than V OLS
1:100 .

What happens here is that the large negative value of λ = −273.5 allows
β̂λ to essentially subtract out a “bad part” of the complete-data OLS, that is,
the part using the last 64 observations. Indeed, V (β̂λ) = 0.0276 is quite close
to V OLS

1:36 = 0.0296. It is not surprising to see that our optimally-chosen β̂λ

does slightly better than β̂OLS
1:36 . This is because the equal-weighting nature of

OLS permits β̂OLS
1:36 to be written as a linear combination of β̂OLS

1:100 and β̂OLS
37:100,

and hence the optimal λ would allow β̂λ to beat β̂OLS
1:36 by extracting out a

tiny amount of useful information from the last 64 observations that was
not already in the first 36 observations, as available to the OLS approach.
Of course the best procedure is simply to use the MLE based on all 100
observations, which has a much smaller variance, V MLE

1:100 = 0.01.
For the ARCH model in Section 2, clearly OLS is not self-efficient when

α1 > 1 because any self-efficient procedure will necessarily reduce MSE (or
variance when we deal only with unbiased estimators, such as OLS) as the
data size grows. But, as the example above demonstrates, the non-increasing
MSE property is not a sufficient condition for self-efficiency. This is further
illustrated by the case of α1 = 1. For simplicity, let us assume t1 = 1.
Then the relative efficiency of β̂1:n = Ȳn to that of the full-data estimator
β̂1:N = ȲN is given by

(3.1) REn =
V1:N

V1:n
= 1− f

α0 + 2Y 2
0

(n + 1)α0 + 2Y 2
0

= 1− f

[
σ2

1 + σ2
0

σ2
1 + σ2

n

]
,
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where f = (N − n)/N is the fraction of missing data, and the rightmost
expression is due to (2.5) with α1=1. Whereas this REn never exceeds one,
it approaches one rather rapidly as σ2

n increases, in contrast to the situation
when Yt’s are i.i.d., a case where REn = n/N = 1 − f (which can also be
seen in (3.1) if σ2

t does not change with t). That is, if one uses OLS, then the
information in much of the later part of the time series is essentially wasted.

This fact suggests that it should be fairly easy to dominate ȲN by com-
bining it with Ȳn. To see this, consider β̂λ = λȲn +(1−λ)ȲN . Using the fact
Cov(Ȳn, ȲN ) = (1− f)Var(Ȳn), we have

(3.2) Var(β̂λ) =
[
λ2 + 2λ(1− λ)(1− f)

]
V1,n + (1− λ)2V1,N .

Hence Var(β̂λ) < Var(ȲN ) is equivalent to (assuming 0 < λ < 2)

(3.3)
λ + 2(1− λ)(1− f)

2− λ
<

V1:N

V1:n
= REn.

This leads to

(3.4) 0 < λ < 2
REn − 1 + f

REn − 1 + 2f
=

2n

(2n + 1) + 2Y 2
0 /α0

.

That is, for any λ that is not too close to 1 in the sense of satisfying (3.4),
β̂λ has a smaller MSE than the full-data OLS ȲN , which implies that OLS
is not self-efficient for ARCH (when α1 = 1). Note the choice of λ here
does not depend on the estimand β, an obvious requirement for the notion
of self-efficiency to be meaningful. The expression (3.4) also illustrates the
impact of Y 2

0 . On one hand, when Y 2
0 = 0 or is relatively small compared

to α0, there would be no or little impact of the value of α0 on the possible
range of λ . On the other hand, when Y 2

0 is large (relative to α0) it will take
some quite large n to diminish its initial impact on σ2

n, and hence the linear
combination β̂λ = λȲn +(1−λ)ȲN needs to give more weight to ȲN in order
to dominate the full-data estimator ȲN .

Since OLS is a root of a second-order regular estimating equation (SOREE,
which means that it satisfies a set of standard differentiability and integra-
bility assumptions, as listed in Xie and Meng, 2012), there is an indirect but
typically easier way to ascertain whether the root is self-efficient. Specifically,
Xie and Meng (2012) established that if our complete-data estimator θ̂com is
derived from a SOREE hcom(Zcom; θ) = 0, and the observed-data estimator
θ̂obs from a SOREE hobs(Zobs; θ) = 0, then the corresponding estimating
procedure is self-efficient asymptotically if and only if asymptotically

(3.5)
[
E

(
−∂hobs

∂θ

)]−1

E
(
hobsh

>
com

)
=

[
E

(
−∂hcom

∂θ

)]−1

E
(
hcomh>com

)
.
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10 MENG AND XIE

Note here the negative sign on both sides is unnecessary for the equality
but is needed to make a connection with the expected Fisher information,
as discussed below. Whereas the meaning of (3.5) may not be immediately
clear, a special case, which is applicable to our ARCH example, helps to
reveal the essence of (3.5). It is obvious that if (asymptotically)

(3.6)
[
E

(
−∂hobs

∂θ

)]−1

E
[
hobs(hcom − hobs)>

]
= 0,

then (3.5) becomes (asymptotically)

(3.7)
[
E

(
−∂hobs

∂θ

)]−1

E
(
hobsh

>
obs

)
=

[
E

(
−∂hcom

∂θ

)]−1

E
(
hcomh>com

)
.

When hcom(Zcom; θ) and hobs(Zobs; θ) are, respectively, the score functions
from complete-data and observed-data likelihoods, we see (3.7) holds triv-
ially because of the second Bartlett identity, namely, the expected Fisher
information is the same as the variance of the score function (see Section 5),
and therefore both sides are the identity matrix. In this sense, (3.5) or (3.7)
can be viewed as an extension of the second Bartlett identity, which plays a
key role in likelihood inference and alike; see Meng (2009, 2011) for a recent
investigation of the role of Bartlett identities in H-likelihood.

For our ARCH example, we let Zcom = {Yt, t = 1, . . . , N}, and Zobs =
{Yt, t = t1, . . . , tn}, and accordingly (note here θ = β)

(3.8) hcom(Zcom; θ)=
N∑

t=1

(Yt − βXt)Xt, hobs(Zobs; θ)=
tn∑

t=t1

(Yt − βXt)Xt.

Using the fact that Yt and Ys are uncorrelated whenever t 6= s (conditioning
on Xt’s), we see (3.6) holds trivially in general but (3.7) does not. This is
because that even in the case where Xt ≡ 1, the left-hand side of (3.7), which
is nVt1:tn , can be asymptotically the same as its right-hand side NV1:N , if
and only if α1 < 1, in which case both sides converge to σ2 = α0/(1− α1).
Therefore, OLS is (asymptotically) self-efficient for ARCH with Xt ≡ 1 if
and only if α1 < 1, assuming we do not put any constraints on what t1 and
tn can be.

If we do allow ourselves to put restrictions on where we collect our ob-
servations Zobs = {Yt, t1 ≤ t ≤ tn}, we can see from (2.6) that there is one
special class of sub-samples for which OLS can be regarded as self-efficient
even when α1 = 1. This is because when α1 = 1, Vt1:tn depends on t1 and tn
via its length n and the “center” (t1+tn)/2. Therefore, if the selection mech-
anism for Zobs (see Definition 1) is such that it selects only middle segments
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of the entire series, namely, with t1 + tn = 1 + N , exactly or asymptotically,
then (3.7) holds in the same fashion. This, of course, says little about OLS
being a good procedure, but rather that it cannot be improved upon by
using itself in such cases. In other words, self-efficiency is a form of minimal
requirement for a sensible estimating procedure. Without it, we can expect
paradoxical behaviors and a great loss of information. But with it, the pro-
cedure can still be much inferior to other procedures (e.g., MLE), including
being inconsistent (since Definition 1 says nothing about being consistent).

4. Do Additional (Correct) Assumptions Always Help?. The an-
swer to this question is the same as that to the question in the title of Section
2, that is, “NO.” Also as before, the answer becomes “YES” when we use
probabilistically principled methods such as MLE and Bayesian approaches.
The following brief review reminds us how Fisher information necessarily
increases when we make (relevant) assumptions to reduce our model class.

For simplicity, let us assume our model parameter θ = (θ1, θ2)> is two
dimensional, with θ1 being of primary interest and θ2 serving as the nuisance
parameter. For notation, we adopt the convention

(4.1) I(θ) =

(
i11 i12

i21 i22

)
and I−1(θ) =

(
i(11) i(12)

i(21) i(22)

)
;

here I(θ) can be either the expected Fisher information or the observed
Fisher information. The difference between these two versions can be quite
important in practice (e.g., Efron and Hinkly, 1978), but the following dis-
cussion is relevant for either version. We will also assume all the usual regu-
larity conditions for justifying the asymptotical arguments in the following
derivations.

As is well known, without any restrictions on the nuisance parameter θ2,
the asymptotic variance for the MLE for θ1 is given by i(11). Therefore, if
we define Fisher information for an individual parameter by the inverse of
the variance of its MLE, we see

(4.2) I(θ1) = [i(11)]−1 = i11 − i212

i22
and I(θ1|θ2) = i11,

where I(θ1|θ2) means the Fisher information for estimating θ1 conditioning
on the value of θ2 being given. Let

(4.3) G(θ1|θ2) = I(θ1|θ2)− I(θ1) and R(θ1|θ2) =
G(θ1|θ2)
I(θ1)

be respectively the absolute gain and relative gain in Fisher information
for estimating θ1 due to knowing θ2. Then (4.2) justifies the phrase “gain”
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12 MENG AND XIE

because G(θ1|θ2) ≥ 0 and it is zero if and only if i12 = 0, that is, when
the two parameters θ1 and θ2 are orthogonal in the sense that the Fisher
information matrix I(θ) is diagonalized. The meaning of i12 = 0 can be seen
even clearer from a Bayesian perspective, because

(4.4) R(θ1|θ2) =
r2(θ1, θ2)

1− r2(θ1, θ2)
,

where

r(θ1, θ2) =
i(12)

√
i(11)i(22)

=
−i12√
i11i22

is the (limit of the) asymptotic posterior correlation between θ1 and θ2 (this
is most easily seen when we use observed Fisher information). Hence the
relative gain is completely determined by how correlated θ1 and θ2 are. If
i12 = 0, then the two parameters are uncorrelated, and hence information
on θ2 provides no help for estimating θ1. At the other extreme, the gain is
infinity when θ1 is determined by θ2, and hence knowing θ2 implies that θ1

is also known with certainty.
All the calculations above are well known and seem to only confirm the

obvious. What is less well known or obvious is that as soon as we move from
MLE to an estimating equation setting, then the “obvious” no longer holds
in general. Below is a non-trivial example demonstrating how assumptions
on the nuisance parameters can actually do serious harm when we employ
them in a seemingly very natural but actually very flawed way, even when
these assumptions are known to be true (and therefore the issue addressed
here is not the usual bias-variance trade-off due to incorrect assumptions).

Suppose we want to estimate the correlation ρ for bivariate normal data
{(xi, yi), i = 1, . . . , n}. Without making any restriction on other model pa-
rameters φ = {µX , µY , σ2

X , σ2
Y }, we know the sample correlation

(4.5) ρ̂n =
SXY − nX̄Ȳ

SXSY
≡ hn(φ̂n, SXY )

is the MLE and hence it is asymptotically efficient with asymptotic variance
(1 − ρ2)2/n (see Ferguson, 1996); here φ̂n = {X̄, Ȳ , SX , SY } is the MLE
of φ (and hence the sample variances S2

X and S2
Y , as well as the sample

cross product SXY , are defined with denominator n instead of the usual
n − 1). Now suppose the data are such that both X and Y are marginally
standard normal N(0, 1), hence we know that φ = φ0 = {0, 0, 1, 1}. The
Fisher information for this restrictive model then is n(1 + ρ2)/(1 − ρ2)2.
That is, in our notation we have

(4.6) I(ρ) =
n

(1− ρ2)2
and I(ρ|φ0) =

n(1 + ρ2)
(1− ρ2)2

.
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Therefore R(ρ|φ0) = ρ2 ≥ 0. However, this gain is achieved by the MLE
of ρ, which is a root of a cubic equation determined by {S2

X , S2
Y , SXY } (see

Jeffreys 1983). It is not achieved by performing a seemingly very natural and
intuitive “plug-in” step, that is, to replace the sample estimate φ̂n in the hn

function in (4.5) by its true value φ0, which would lead to the estimator

(4.7) r̂n ≡ hn(φ0, SXY ) = SXY =
1
n

n∑

i=1

xiyi.

Whereas this estimator can also be justified from an estimating equation de-
rived from E(XY ) = ρ under the restrictive model, it is clearly not efficient
because it only uses a part of the minimal sufficient statistics {S2

X , S2
Y , SXY }.

Indeed it is a terrible estimator because it is not even guaranteed that
|r̂n| ≤ 1, the necessary range for any correlation. One can easily see that
Var(r̂n) = (1 + ρ2)/n for any n, hence the corresponding information is
I(hn)(ρ|φ0) = n/(1 + ρ2). Consequently, the “gain” in information from
knowing the φ̂n part of hn(φ̂n, SXY ) is actually negative for this seemingly
obvious “plug-in” method because

R(hn)(ρ|φ0) ≡ I(hn)(ρ|φ0)− I(ρ)
I(ρ)

= −(3− ρ2)
ρ2

1 + ρ2
.

This loss of efficiency therefore approaches 100% as ρ2 approaches 1. Intu-
itively, this is because the sample correlation will estimate ρ perfectly when
ρ2 = 1, but r̂n would still incur a variance of 2/n. The loss compared with
the MLE of ρ given φ = φ0 is even more substantial because by (4.6):

I(hn)(ρ|φ0)− I(ρ|φ0)
I(ρ|φ0)

= − 4ρ2

(1 + ρ2)2
.

As a simple illustration, when ρ2 = 1/2, the variance of r̂n is 6 times the
(asymptotic) variance of the sample correlation, and 9 times that of the
optimal MLE.

We detail this example because it provides an excellent reminder of a
number of theoretical insights that have direct general practical implica-
tions. First, whenever possible, more well-developed and probabilistically
principled methods such as MLE and Bayesian estimation should be pre-
ferred. The MLE for ρ, which is a root of a cubic equation, is not something
intuitive enough to derive without following the MLE recipe. (Incidentally
we remark that the maximum entropy distribution in the class of distri-
butions {f(X, Y ), (X, Y ) ∈ R2 : Ef [XY ] = ρ} does not exist, which can
be proved by using results given in Ebrahimi, Soofi, and Soyer (2008), as
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14 MENG AND XIE

pointed out by a reviewer.) Indeed, the substantial gain of information for
estimating ρ from knowing φ has posed a great puzzle to even some pro-
fessional statisticians (as we have tried it on some) because our common
intuition may suggest that the information about the marginal distributions
should provide no information (at least not asymptotically) for estimating
the correlation, as the correlation is invariant to affine transformations of
each margin. Not wanting to spoil a great opportunity for a good mental
exercise, we will not reveal the answer to the puzzle but only mention that
a clue can be found in Jeffreys (1983).

Second, this example illustrates that the common ad hoc method of “par-
tial plug-in” can do much more harm than good, and it is not enough to use
our “intuition” as the safeguard. After all, it was a conventional wisdom that
got us into trouble in the first place, as many of us had reasoned “how could
one do worse by replacing an estimated quantity with its truth?” The above
example shows how, and not just worse but disastrously so! It is particularly
worth mentioning that the estimator we started with in this example is the
most efficient MLE under the unrestrictive model, and the way the replace-
ment was made also seems to be very natural. We simply express the MLE as
a function of minimal sufficient statistics {φ̂,SXY } = {X̄, Ȳ , SX , SY , SXY },
and substitute those components with their known estimands under the re-
strictive model. The negative result we obtained therefore is not due to any
defect of the original estimator or a rather contrived “plug-in” step for the
sake of constructing a pathological counterexample. Rather, it is squarely
due to the fact that “partial plug-in” is not a valid general strategy (with-
out further qualification) because there are no sound statistical principles
behind it other than its seemingly “very natural and intuitive” appearance.

Third, as far as statistical estimation goes, it is always a good idea to
be mindful of the potential substantial loss of efficiency when we invoke a
criterion that does not address the full efficiency. Here r̂n of (4.7) is both
unbiased and self-efficient (the latter because it is an iid sum), but neither
of these properties prevents it from being a terrible estimator. Hence this
example also provides a great illustration of the difference between self-
efficiency and full efficiency, and it re-confirms the well understood fact
that unbiasedness is typically not sought for its own sake but rather as a
consequence of other considerations (see, for example, the desirable SOUP
property studied by Meng and Zaslavsky, 2002). Incidently, even when we
consider small-sample MSEs, the unbiased r̂n is still typically dominated by
the sample correlation ρ̂n of (4.5), because the latter is nearly unbiased in
the sense that its relative bias is less than n−1 for any n ≥ 2 for bivariate
normal data, as proved in Meng (2005).
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In a nutshell, moment estimators and more generally estimating equations
are used frequently in practice especially in the economics literature because
of their simplicity and robustness (to model assumptions). Whereas both
simplicity and robustness are of great practical importance, this example
reminds us of the need to exercise caution when we try to improve upon
these methods by incorporating additional assumptions. When it is feasible,
it would be much safer (than relying on “partial plug-in”) to entertain a
reasonable working model and use the score equation under the working
model as a guideline to construct an improved estimating equation that
incorporates the additional assumption. We will illustrate such a strategy in
Section 5 for general time series data.

5. How Does the MLE Extract Information?. Let us consider a
general class of conditionally normal models for dependent data, {Yt1 , . . . , Ytn},
where the subscripts {t1, . . . , tn} do not have to index time nor do they
necessarily form a consecutive or even equal-spaced sequence, that is, the
spacing sj = tj−tj−1 can be arbitrary (but positive). Let Fj−1 be the σ-field
generated by {Yt1 , . . . , Ytj−1}, with F0 being the trivial σ-field. By condition-
ally normal we mean p(Ytj |Fj−1; θ) is given by N(µj(θ), τ2

j (θ)), j = 1, . . . , n
where for notational simplicity we suppress—but not forget—the depen-
dence of µj(θ) and of τ2

j (θ) on Fj−1. Indeed such unrestricted dependence
makes this class of models rather general, in spite of the seemingly restrictive
conditional normality assumption, because the resulting joint distribution of
the entire data sequence Zobs = {Yt1 , . . . , Ytn} can be far from normal (e.g.,
the aforementioned ARCH model).

Under such a setting, the score function S(θ|Zobs), which again for nota-
tional simplicity we suppress Zobs and use only its size n to remind ourselves
of the data source, is given by

(5.1) Sn(θ) = −
n∑

j=1

[
τ ′j(θ)
τj(θ)

+ dj(θ)d′j(θ)

]
,

where dj(θ) = [Ytj − µj(θ)]/τj(θ) and d′j(θ) denotes its derivative (similar
notation for τ ′j(θ)); we obviously assume the usual differentiability and other
regularity conditions as needed (we will not repeat any such mathematical
qualification in subsequent discussions unless a qualification is important for
conveying a central idea). Because

(5.2) d′j(θ) = − 1
τj(θ)

[
µ′j(θ) + dj(θ)τ ′j(θ)

]
,
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16 MENG AND XIE

we see that the MLE of θ is a root of

(5.3)
n∑

j=1

dj(θ)

[
µ′j(θ)
τj(θ)

]
=

n∑

j=1

(
1− d2

j (θ)
) [

τ ′j(θ)
τj(θ)

]
.

This general expression reveals how the MLE extracts additional information
from each Yj beyond the information already captured by Fj−1.

To see this clearly, let us start with n = 1. In such a case, (5.3) becomes

(5.4) d1(θ)µ
′
1(θ) = (1− d2

1(θ))τ
′
1(θ).

We first note that in order for the left-hand side of (5.4) to have mean zero,
we only need to correctly specify the (conditional) mean µ1(θ). In contrast,
in order for the right-hand side to have mean zero, we must also correctly
specify the (conditional) variance τ2

1 (θ) after µ1(θ) is correctly specified.
Intuitively speaking, the left-hand side of (5.4) extracts the information in Y1

by fitting its mean, and the right-hand side extracts additional information
by fitting its variance.

This separation of fitting tasks is seen even more clearly when τ1(θ) does
not depend on θ and hence fitting the variance will not provide any addi-
tional information about θ once the mean has been fitted. The estimating
equation (5.4) correctly recognizes this fact via τ

′
1(θ) = 0, which leads to

using only its left-hand side to estimate θ. Similarly, when µ
′
1(θ) = 0, all

the information for θ will come from the variance side only, that is, the
right-hand side of (5.4). Of course, if both µ

′
1(θ) and τ

′
1(θ) are zero, then θ

is not identifiable from Y1 alone, and (5.4) captures this non-identifiability
correctly by yielding the “0=0” trivial identity. When both µ

′
1(θ) and τ

′
1(θ)

are non-zero, the best estimator is obtained when the fitness or rather non-
fitness incurred by the two sides is balanced.

Now suppose we have a second data point Y2. The MLE approach again
performs this balancing act by adding to each side the same type of non-
fitness measure, but with two additional considerations. First, the mean
µ2(θ) and the standard deviation τ2(θ) are not that of the marginal distri-
bution of Y2, but rather of the conditional distribution of Y2 given Y1. This
makes perfect sense, because if there is any gain from having Y2, it must
come from the information that is not already captured by Y1 (assuming we
have already used up all the information in Y1).

Second, to appropriately weight the information in Y1 and Y2, the deriva-
tives µ′j(θ) and τ ′j(θ) for j = 1, 2 need to be weighted by the scaling factor
τj(θ). This also makes intuitive sense because, without such a scaling factor,
one would be able to arbitrarily exaggerate or diminish the information in
a particular Yj by changing its scale, which would not affect dj(θ), but it
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would affect the corresponding µ
′
j(θ) and τ ′j(θ). This fact also explains why

the usual optimal linear combination of several independent estimators for
the same θ is the one with inverse variance as its weight, not the inverse
of standard deviation. That is, the inverse weighting by variance actually is
the product of two standard deviation scalings, one for individual estimators
(i.e., as in dj(θ)) and one for µ′(θ), which takes value 1 when µ(θ) = θ.

This scaling for appropriately measuring the accumulation of information
is vivid in the Fisher information formulation. Specifically, let us define
ξj(θ) = µ′j(θ)/τj(θ), ηj(θ) = τ ′j(θ)/τj(θ) and In(θ) = −S′n(θ). Equations
(5.1)-(5.2) then lead to

(5.5) In(θ) =
n∑

j=1

[
ξj(θ)ξ>j (θ) + 2ηj(θ)η>j (θ)

]
+ R1,n(θ),

where, suppressing the function argument θ for simplicity,

(5.6) Rl,m =
m∑

j=l

[
dj

(
ξjη

>
j + 2η>j ξj − ξ′j

)
− (1− d2

j )
(
2ηjη

>
j − η′j

)]
,

with ξ′j and η′j being matrices. By the definition of dj(θ), we have for j ≥ 1
and any θ ∈ Θ,

(5.7) E[dj(θ)|Fj−1] = 0 and E[1− d2
j (θ)|Fj−1] = 0.

Consequently, E[R1,n(θ)] = 0 and hence the expected Fisher information in
{Ytj , j = 1, . . . , n} is (note here we use In to denote the expectation of In):

(5.8) In(θ) =
n∑

j=1

E[ξj(θ)ξ>j (θ)] + 2
n∑

j=1

E[ηj(θ)η>j (θ)] ≡ I(µ)
n (θ) + I(τ)

n (θ).

This form of In(θ) of course is well-known for the AR(1) model under nor-
mality. By recasting it in this more general form and by viewing n as a
generic index, we see more clearly from (5.8) that the total information as
measured by the expected Fisher information is accumulated via two kinds
of additivity.

The first kind additivity is due to data augmentation2, that is, we gain
information from having more data. Here, the incremental information con-
tained in the conditional model Ytj |Fj−1 ∼ N(µj(θ), τ2

j (θ)) is added to the

2The term “data augmentation” (Tanner and Wong, 1987; 2010) is also well-known in
the EM and MCMC literature, where it refers to creating artificial (missing) data for the
purpose of constructing useful statistical algorithms. The connection with the discussion
here is that the algorithmic efficiencies of these algorithms are (almost) exactly determined
by the amount of augmented Fisher information; see van Dyk and Meng (2001, 2010) for
an overview and some detailed investigations.
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information already measured for Fj−1, namely Ij−1(θ). This kind of addi-
tivity of course is a direct consequence of the conditional model formulation,
which permits sequential input of non-redundant information. In the time
series literature, this is known as a consequence of factoring the likelihood
using orthogonal errors (see Wilson, 2001). It is trivial to see that the to-
tal information is invariant to the order we choose to factor the likelihood.
(Even when our data follow a natural time order, there is no particular
mathematical reason that would prohibit us from choosing another ordering
for modeling. Indeed, in the general context of Markov chains, it is common
to consider time-reversed chains.)

The second kind is additivity due to model reduction, that is, we gain
information by reducing the model class via adding more restrictions. From
(5.8) we see the expected Fisher information is the sum of two parts: the
information from fitting the mean part µj(θ), as represented by the jth
term in I(µ)

n (θ), and the additional information from fitting the variance
part τ2

j (θ), as represented by the jth term in I(τ)
n (θ). This second kind of

additivity is less well-known, but it reflects more fundamentally how MLE
extracts the maximum amount of information. As a matter of fact, if we let
S

(µ)
n (θ) =

∑n
j=1 dj(θ)ξj(θ) and S

(τ)
n (θ) =

∑n
j=1

(
d2

j (θ)− 1
)

ηj(θ), then

(5.9) Sn(θ) = S(µ)
n (θ) + S(τ)

n (θ),

where both S
(µ)
n (θ) and S

(τ)
n (θ) behave like a genuine score function. This

is because S
(µ)
n (θ) is the score function when we assume τj(θ) is free of

θ, and S
(τ)
n (θ) is the score function when we assume µj(θ) is free of θ.

Furthermore, S
(µ)
n (θ) and S

(τ)
n (θ) share no redundant information because

Cov(S(µ)
n (θ), S(τ)

n (θ)) = 0, which holds whenever E(d3
j |Fj−1; θ) = 0 for all

j ≥ 1, a condition that is certainly satisfied under the conditional normality.
These facts imply that the information in both S

(µ)
n (θ) and S

(τ)
n (θ) can

be measured by their corresponding expected Fisher information even when
they are treated as estimating equations, because the root of S

(µ)
n (θ) = 0

has the asymptotic variance
[
I(µ)

n (θ0)
]−1

, and the root of S
(τ)
n (θ) = 0 has

the asymptotic variance
[
I(τ)

n (θ0)
]−1

, where θ0 is the true value of θ. (Note,
to establish such results rigorously, we will need regularity conditions and
martingale theory, neither of which is central to the key messages in the
current paper.) The reason for not needing the usual “sandwich” estimator
for the asymptotic variance is that S

(µ)
n (θ) = 0 and S

(τ)
n (θ) = 0 possess a

necessary condition for being an optimal estimating equation in the sense
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that both satisfy the second Bartlett identity (see Godambe, 1960 and 1976;
Meng, 2011):

(5.10) Var(S(ζ)
n (θ)) = E

[
−∂S

(ζ)
n (θ)
∂θ

]
≡ I(ζ)

n (θ), for all θ,

where ζ can be either µ or τ .
In other words, under some regularity conditions (e.g., see Xie and Meng,

2012), either side of (5.3) can be used as an (optimal) estimating equation in
itself for consistently estimating θ. However, the amount of information uti-
lized by the left-hand side estimating equation S

(µ)
n (θ) = 0 is only I

(µ)
n (θ0),

and the amount of information used by the right-hand side estimating equa-
tion S

(τ)
n (θ) = 0 is only I

(τ)
n (θ0). The MLE utilizes both parts of information

by summing them, as in (5.9), and the additivity

(5.11) In(θ) = Var(Sn(θ)) = Var(S(µ)
n (θ))+Var(S(τ)

n (θ)) = I(µ)
n (θ)+I(τ)

n (θ)

holds due to the aforementioned orthogonality, Cov(S(µ)
n (θ), S(τ)

n (θ)) = 0.
An important implication of the above results is that, although we in-

voked the conditional normality in deriving the initial score function equa-
tion (5.3) or equivalently (5.9), the resulting estimating equations behave
coherently in the sense of preserving the aforementioned two kinds of addi-
tivities under a much weaker assumption, namely, the conditional skewness
is zero, E(d3

j |Fj−1; θ) = 0 (note technically this is even weaker than requir-
ing p(Yj |Fj−1; θ) be symmetric, though for many practical purposes, it is
difficult to achieve zero skewness without symmetry).

The preservation of the information additivity over data augmentation
ensures us that as we collect more data the efficiency of our estimate cannot
decrease. Similarly, the preservation of information additivity under model
reduction guarantees the same is true when the added assumptions are valid.
Estimating equation (5.9) therefore is an appealing general estimating equa-
tion when only the first two conditional moments are specified. For example,
when additional assumptions are made about θ, they will be reflected in the
derivatives µ′j(θ) and τ ′j(θ), j = 1, . . . , n. Because (5.9) acts coherently just
as a real score function under the (working) conditionally normal model, the
additional information from the added assumptions will be at least partially
realized and properly reflected in the resulting expected Fisher information,
instead of unintentionally causing damage as in the correlation example of
Section 4.

6. How Much More Can We Learn From the AR(1) Model?.
The AR(1) model with normal error appears to be the simplest non-trivial
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example (the so-called “S-NoTE”) in the context of time series modeling,
and the relevant literature is enormous in both econometrics and statistics.
Early classic work in statistics include White (1958) and Anderson (1959),
studying the limiting distributions of least square estimators for the AR(1)
models. A good number of later developments were listed (and some were
reviewed) in Chan (2006), including generalizations to multivariate cases
(e.g., Tsay and Tiao, 1990). An excellent reference book containing much
of the advanced theory on AR(1) and much more is Tanaka (1996). Most
recent examples include Chan and Ing’s (2011) results on a uniform bound
for the inverse Fisher information matrix, as well as an intriguing result on
predictive error by Yu, Lin and Cheng (2012). On the econometrics side,
much work has been devoted to unit-root AR(1) models and related prob-
lems, for example the work by Phillips (1987) and Phillips and Perron (1988)
developing a number of tests for the unit root. The applied interest in AR(1)
and related models is highlighted by an entire issue of Journal of Applied
Econometrics (1991, October/December issue) devoted to discussions on
using AR(1) models for GNP growth and related analyses.

The AR(1) model is also one of the simplest (continuous) Markov chains,
defined by

(6.1) Yt = ρYt−1 + εt, εt
iid∼ N(0, σ2), t = 1, . . . , T,

where Y0 is often set to zero but, in a finite-time horizon framework, it would
be more appropriate to treat it as a parameter. Typically we are interested
in estimating ρ, with σ2 (and Y0) treated as a nuisance parameter. Under
this setup, it is well-known that for any t > s ≥ 0,

(6.2) Yt|Ys ∼ N(ρt−sYs, kt−s(ρ)σ2), with kl(ρ) =
l−1∑

j=0

ρ2j .

To apply (5.8) with Zobs = {Ytj , j = 1, . . . . , n}, we know from (6.2) that
µj(θ) = ρsjYtj−1 and τ2

j (θ) = ksj (ρ)σ2, where sj = tj − tj−1, j = 1, . . . , n.
Consequently, for θ = {ρ, σ2, Y0}, ξj(θ) = (sjρ

sj−1Ytj−1 , 0, ρt11{j=1})>/τj(θ).
It then follows

(6.3) I(µ)
n (θ) =

1
σ2




Y 2
0 A1,n(ρ) + σ2B2,n(ρ) 0 t1γ1(ρ)Y0

0 0 0
t1γ1(ρ)Y0 0 ργ1(ρ)


 ,

where A`,n(ρ) =
∑n

j=` αj(ρ), B`,n(ρ) =
∑n

j=` βj(ρ), with

(6.4) αj(ρ) =
s2
jρ

2(tj−1)

ksj (ρ)
, βj(ρ) =

s2
jρ

2(sj−1)ktj−1(ρ)
ksj (ρ)

, γ1(ρ) =
ρ2t1−1

kt1(ρ)
.
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Here we have used the fact that E(Y 2
tj−1

) = ρ2(tj−1)Y 2
0 + ktj−1(ρ)σ2 with the

convention that k0(ρ) ≡ 0. Similarly, because ηj(θ) = 0.5(δj(ρ), 1/σ2, 0)>,
where δj(ρ) = k′sj

(ρ)/ksj (ρ), j = 1, . . . , n, we have

I(τ)
n (θ) =

1
2σ4




σ4 ∑n
j=1 δ2

j (ρ) σ2 ∑n
j=1 δj(ρ) 0

σ2 ∑n
j=1 δj(ρ) n 0
0 0 0


 .(6.5)

From these expressions, we can examine many factors that affect the amount
of information in the data or in our model assumptions. Such investigations
are useful for both data collection and data analysis. For example, in the
context of collecting future data we may wonder if we should take a daily
observation for 30 consecutive days or we should take one observation every
other day for 60 day period, assuming we can afford waiting for 60 days
but no more than 30 observations (and that the same model is applicable
to the longer period). Or for analyzing historical data with missing obser-
vations, we may wonder how much information is lost due to the particular
pattern of the missing observations, and how much of the lost information
can be compensated by introducing assumptions on the nuisance parameters
(perhaps from other studies in the literature)?

Before we answer any of such questions, we emphasize that, although the
expressions I(µ)

n (θ) and I(τ)
n (θ) are valid for any value of ρ, using the expected

Fisher information In(θ) = I(µ)
n (θ) + I(τ)

n (θ) to determine the asymptotic
variance for the MLE is valid only when |ρ| < 1. (But for such asymptotics to
work well, one should also avoid near-unit root cases, such as those described
in Chan, 1988.) As it is well-known (see Tanaka, 1996), for |ρ| ≥ 1, the usual
normal asymptotics fail and hence a more involved calculation is needed. In
the current paper, we will focus on the stationary case with |ρ| < 1, which
already provides a rich setting to investigate the questions raised above.

6.1. Is there as interaction between model assumptions and data pat-
terns?. As in Section 4, let ist and i(st) be the {s, t}th element of In(θ)
and of I−1

n (θ), respectively. Using the fact that i23 = 0 and In(θ) is sym-
metric, we have, as a generalization of (4.2),

(6.6) In(ρ) ≡ [i(11)]−1 = i11 − i212

i22
− i213

i33
< i11 = In(ρ|σ2, Y0),

where In(ρ|σ2, Y0) denotes the expected Fisher information for ρ when we
assume both σ2 and Y0 are known. Furthermore, here i212/i22 measures the
(absolute) gain in information for estimating ρ by conditioning on σ2 (i.e.,
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treating it as known), and i213/i33 measures the gain due to conditioning on
Y0. That is, using the conditional information notation, we have

(6.7) In(ρ|Y0) = i11 − i212

i22
; In(ρ|σ2) = i11 − i213

i33
.

As in Section 4, we let Gn(ρ|K) = In(ρ|K)−In(ρ) be the gain in information
due to the added knowledge K. Then from (6.6)-(6.7) we see that the two
gains are additive:

(6.8) Gn(ρ|σ2, Y0) = Gn(ρ|σ2) + Gn(ρ|Y0).

This is because i23 = 0, or in Bayesian terms, because σ2 and Y0 are condi-
tionally independent (asymptotically) given ρ, in the same spirit as with the
relationship between the relative gain in information and Bayesian posterior
correlation described by (4.4). Intuitively this makes good sense because
if ρ is known, then knowing the starting value Y0, which is the same as
knowing the mean, tells us little about the residual variance σ2, and vice
versa. Consequently, the information obtained from knowing Y0 and σ2 has
no redundancy, leading to the additivity in (6.8).

The practical relevance of these results is that they can provide useful
insights and general guidelines on what gain or loss of information is im-
portant and for what (missing) data patterns. For example, suppose our
observed data are a consecutive segment Zobs = {Yt, . . . , Yt+n−1}, for which
sj = 1, j = 2, . . . , n and s1 = t. Then, ksj (ρ) = 1 for j ≥ 2 and k1(ρ) =
(1− ρ2t)/(1− ρ2). It follows then (recall δj(ρ) = k′sj

(ρ)/ksj (ρ))

Rn(ρ|σ2) ≡ Gn(ρ|σ2)
In(ρ)

=
1
2nδ2

1(ρ)
Y 2
0

σ2 A2,n(ρ) + B2,n(ρ) + 1
2(1− 1

n)δ2
1(ρ)

<
1

n− 1
,

where the inequality holds because both A2,n(ρ) (note it is not A1,n(ρ)) and
B2,n(ρ) are positive. Therefore, knowing the value of σ2 essentially does not
help the estimation of ρ; indeed for fixed t, the relative gain Rn(ρ|σ2) goes
to zero at the n−2 rate.

In contrast, consider cases where the observations are not consecutive and
there is a sufficient amount of gaps among them. That is, let Jn = {j ≥ 2 :
sj > 1}, and we assume rn = |Jn|/n approaches r > 0 as n increases, where
|Jn| is the cardinality of Jn. By the definition of δj(ρ), it is non-zero if and
only if j ∈ Jn. Let δ̄Jn(ρ) be the sample average of {δj(ρ), j ∈ Jn}, and
VJn(ρ) be its sample variance (with denominator |Jn|). Then simple algebra
yields

Rn(ρ|σ2) =
0.5r2

n[δ̄Jn(ρ)]2
Y 2
0

σ2
A2,n(ρ)

n + B2,n(ρ)
n + 0.5

{
rn(1−rn)[δ̄Jn(ρ)]2+ rnVJn(ρ)

} .
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Because for any ` ≥ 1

A`,n(ρ) =
n∑

j=`

s2
jρ

2(tj−1)

ksj (ρ)
<

∞∑

t=1

t2ρ2(t−1),

which is a converging series when ρ2 < 1, we know A2,n(ρ)/n → 0 for any
|ρ| < 1. Using the fact that ktj−1(ρ) = (1− ρ2tj−1)/(1− ρ2), we can write

(6.9)
B2,n(ρ)

n
=

1
1− ρ2

[
(1− rn) + rnC̄Jn(ρ)− A2,n(ρ)

n

]
,

where C̄Jn(ρ) is the sample average of {Cj(ρ) =
s2
jρ2(sj−1)

ksj (ρ) , j ∈ Jn}. Note

that Cj(ρ) ≤ [eρ log(ρ)]−2 for all values of sj , and hence C̄Jn(ρ) must be
bounded above regardless of the choices of the sj ’s.

Combining the results above, we see that as n increases, the relative gain
by assuming knowledge of σ2 approaches the limit

R∞(ρ|σ2) =
0.5r2[δ̄J (ρ)]2

1
1−ρ2 [1− r + rC̄J (ρ)] + 0.5

{
r(1−r)[δ̄J (ρ)]2+rVJ (ρ)

} ,

where any quantity with the J subscript is the limit of the same quantity
with the Jn subscript (assuming the limit exists of course). Here we see that
the relative gain will no longer be negligible once we have an appreciable
amount of gaps. Qualitatively this is naturally expected from (6.2) because,
as soon as s > 1, both ρ and σ2 enter the conditional variance function
τ2
j (θ). Hence, knowledge of σ2 helps to better fit the value of ρ via fitting

τ2
j (θ) because its dependence on the unknown σ2 is eliminated (and here we

are using MLE as the estimation method, not an ad hoc “partial plug-in”).
To see how the relative gain from the same information about σ2 depends

critically on the observed data patterns, let us consider the case where we
sample every s(≥ 2) observations, that is sj = s for all j ≥ 2. Then r = 1
and VJ (ρ) = 0, hence

(6.10) R(s)
∞ (ρ|σ2) =

(1− ρ2)[δ̄J (ρ)]2

2C̄J (ρ)
=

2[1− sρ2(s−1) + (s− 1)ρ2s)]2

s2(1− ρ2)2(1− ρ2s)ρ2(s−2)
.

Here we index the limit of Rn(ρ|σ2) explicitly by the superscript s to em-
phasize the interaction between the sample design and model assumption.
That is, the knowledge about σ2 leads to very different relative gain in in-
formation depending on the sampling interval even with the same size fixed.
For example, when s = 2 and s = 3, we have

(6.11) R(2)
∞ (ρ|σ2) =

1− ρ2

2(1 + ρ2)
; and R(3)

∞ (ρ|σ2) =
2(1− ρ2)(1 + 2ρ2)2

9ρ2(ρ4 + ρ2 + 1)
.
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These expressions remind us that interaction between data patterns and
model assumptions is an intricate issue even for such a seemingly simple
situation. We see that, for s = 2, the relative gain is bounded with the gain
ranging from 0% when ρ2 approaches one to 50% when ρ2 approaches zero.
This corresponds to a reduction of asymptotic variance from 0% to 33.3%
(because the the percentage of variance reduction is given byR∞/(1+R∞)).
However, although for s = 3 the reduction is also a monotone decreasing
function of ρ, the range now increases to (0,∞), resulting in variance reduc-
tion of potentially 100% as ρ approaches zero.

6.2. What is the optimal spacing?. The above calculation also reveals
that the optimal sampling interval for estimating ρ increases with ρ when
the sample size n is fixed. Qualitatively, this is expected because as ρ in-
creases, consecutive observations become increasingly similar to each other
and hence, for a given sample size n, the effective sample size decreases.
Increasing the sampling interval then helps to combat this problem, for the
very same reason that “thinning” in Markov chain Monte Carlo is useful
when one can process only a fixed number of draws (see Gelman and Shirley,
2011). The Fisher information calculation helps us to see quantitatively how
the optimal spacing increases with the value of ρ. For example, it is not
obvious how large |ρ| must be before the optimal spacing jumps from s = 1
to s = 2.

To simplify the derivation, we consider large-n approximation, in which
case the same calculation above yields

(6.12) lim
n→∞

I(s)
n (ρ)
n

=
C̄J (ρ)
1− ρ2

=
s2ρ2(s−1)

1− ρ2s
≡ H(s, ρ),

which recovers the well-known case for s = 1, namely, the asymptotic vari-
ance of ρ̂ is (1− ρ2)/n with consecutive observations. To maximize H(s, ρ)
for a given ρ, we let x = −s log ρ2, which yields

(6.13) H(s(x), ρ) = [ρ log ρ2]−2 x2

ex − 1
.

But x2/(ex− 1) has the global maximizer at the x that satisfies (2−x)ex =
2 or equivalently (x − 2)ex−2 = −2e−2; hence xmax = 2 + W (−2e−2) ≈
1.59362, where W is the so-called Lambert W function, the inverse function
of f(W ) = WeW . The maximum of x2/(ex−1) is xmax(2−xmax) ≈ 0.64761.

Consequently, for any given ρ, H(s, ρ) is maximized at

smax(ρ) =
xmax

− log ρ2
.
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Fig 1. Optimal spacing.
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Fig 2. Relative efficiency.

It is also easy to verify that H(s, ρ) is monotone increasing for s < smax(ρ)
and monotone decreasing after s > smax(ρ).

However, since for our current setting s can only take positive integer
values, the solution for the integer maximization is a bit more involved.
Evidently, when smax(ρ) ≤ 1, the optimal integer spacing must be sopt(ρ) =
1. But sopt(ρ) remains equal to one as long as H(1, ρ) > H(2, ρ). In general,
because for any given positive integer s,

(6.14) Rs(ρ) ≡ H(s + 1, ρ)
H(s, ρ)

= (1 + s−1)2

1−

(
s∑

i=0

ρ2i

)−1



is a strictly monotone increasing function of ρ2, we see that if we find ρs(≥ 0)
such that Rs(ρs) = 1, then {ρ1, ρ2, . . . ..} forms the sequence of cut-off points
such that the optimal spacing is sopt(ρ) = s whenever ρ2

s−1 ≤ ρ2 ≤ ρ2
s, where

ρ0 = 0. This is simply because inside such a range H(s, ρ) dominates both
H(s + 1, ρ) and H(s − 1, ρ), and the unimodality of H(s, ρ) as a function
of s then establishes our assertion. The first couple of values of ρs are easy
to obtain from setting Rs(ρ) = 1 for s = 1 and 2, which give ρ2

1 = 1/3 and
ρ2
2 = (

√
105 − 5)/10, yielding ρ1 = ±0.577 and ρ2 = ±0.724. The rest can

be obtained easily numerically. Figure 1 plots the optimal spacing sopt(ρ) as
a function of ρ for ρ ∈ [0.5, 0.9], and Figure 2 plots the corresponding gain
in efficiency by using the optimal spacing relative to using s = 1.

We see that the maximal gain in efficiency can be quite large, and in fact
it goes to infinity at the rate of 0.64761 log−1(ρ−2) as ρ2 → 1, as can be
verified from (6.12)-(6.13). Note in this verification we have used the fact

imsart-sts ver. 2005/05/19 file: timeseries06272012.tex date: June 28, 2012



26 MENG AND XIE

that because smax(ρ) ∈ [s− 1, s] for any ρ2 ∈ [ρ2
s−1, ρ

2
s], we have

lim
ρ2→1

sopt(ρ)
smax(ρ)

= 1 and lim
s→∞ |ρ

2
s − ρ2

s−1| = 0.

The diminishing of the gap ρs− ρs−1, which can be verified as with the rate
of s−2, is quite visible from Figure 1.

Of course in real applications we do not know the value of ρ before we es-
timate it. This is the usual trouble with mathematical optimality results for
experimental designs (and beyond), because the optimal design necessarily
depends on the estimand we are after. Nevertheless, if one is interested in
finding an approximately economical sampling plan for a given budget (e.g.,
the sample size n), then the above results do provide useful guidelines. It is
not unreasonable to assume that in many practical situations we would have
a rough idea before collecting data about the magnitude of the autocorrela-
tions, for example, small versus large. For instance, if our prior knowledge
tells us that it is almost certain that |ρ| is below say 0.5, then s = 1 is the
choice. On the other hand, if one is suspecting a near unit-root phenomenon,
say |ρ| ≥ 0.8, then s = 3 is a better choice. Although one should not expect
the optimal gain, the minimal gain is often substantial, as shown in Figure
3, where the vertical axis is on the log10 scale. Hence even an ordinate of
0.25, as is the case at about ρ = 0.8, corresponds to more than 75% gain in
efficiency. More precisely, if we use s = 3, then the gain will be anywhere
from 80% to 300% as ρ moves from 0.8 to 1. In general, it is easy to derive
from (6.12) that

(6.15) lim
ρ2→1

H(s, ρ)
H(1, ρ)

= s,

providing a handy rule of thumb for possible improvement near the unit
root.

We remark here that in some applications the setup of letting s grow
but fixing n may be considered irrelevant because the total time horizon
N is moderate or even small, e.g., there were only 64 quarterly observa-
tions available. Consequently, the constraint ns = N means that in order
to increase s we must decrease n. In such cases, the relevant calculation is
how much information is lost by sub-sampling. One important fact is that
although sub-sampling a consecutive sequence always leads to loss of in-
formation under the MLE approach, a sub-sample with a larger size may
not necessarily dominate one with a smaller size because the latter may not
be nested within the former. For example, taking observations every third
quarter is not a sub-sampling of taking observations every other quarter.
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Fig 4. The logarithm of RK(L, ρ).

Even when the sub-samples are nested (and hence there is no surprise as far
as “negative information” goes), the Fisher information calculation can still
reveal phenomena that might not be completely expected. For example, for
estimating the autocorrelation ρ in an AR(1) model, how much efficiency
is lost if we reduce 64 quarterly observations to 32 by sub-sampling every
other quarter? The answer will depend on the value of ρ.

To see this clearly, consider a simple case where Y0 = 0, N = 2K , and
s = 2L, and hence n = 2K−L and the sub-samplings are nested as we increase
L. By (5.8), (6.2), and (6.6), we obtain

(6.16) I(s)
n (ρ) =

s2ρ2(s−1)

1− ρ2s

[
n− 1− ρ2N

1− ρ2s

]
.

Consequently, under the constraint ns = N , the relative information in using
a spacing s compared with using s = 1 is given by

RK(L, ρ) ≡
I(s)

N/s(ρ)

I(1)
N (ρ)

=
I(2L)

2K−L(ρ)

I(1)
2K (ρ)

.

Figure 4 displaying log10[RK(L, ρ)] for K = 10, L = 1, ..., 5, and 0 < ρ ≤ 1.
We see that RK(L, ρ) gets closer to 1 when ρ approaches 1. (Figure 4 shows
only the ρ ≥ 0 case, because Rk(L, ρ) is symmetric about ρ = 0.) Indeed, it
is not hard to show that in general

lim
ρ2→1

RK(L, ρ) =
N − s

N − 1
=

n− 1
n− s−1

,

which is far from the usual n/N ratio when the data are i.i.d. The “cut-
off” line in Figure 4 corresponds to the ρ at which Rk(L, ρ) = n/N = s−1.
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Fig 5. Jeffreys prior density for ρ, as a functional of spacing s.

We therefore learn that as long as n is not too small (n > 30), the loss of
information by using a sub-sample is minor when ρ is close to a unit root.
Figure 4 also reveals that the loss is very substantial if we sub-sample too
much and ρ is not near a unit root.

7. Is the Jeffreys Prior Really Non-informative?. The Fisher in-
formation calculation above also reveals an intriguing phenomenon regarding
the Jeffreys prior for ρ, adding to a set of well-known complications of “non-
informative” priors for the AR(1) model (e.g., Berger and Yang, 1994; Uhlig,
1994a). Specifically, a consequence of (6.12) is that the Jeffreys prior I

1/2
n (ρ)

(for large n) amounts to assigning ρ2s a Beta(1/2, 1/2) distribution, given
ρ ≥ 0. It follows then that for any 0 ≤ a < 1, the prior CDF Fs(a) converges
to zero because

Fs(a) ≡ Pr(ρ2s ≤ a2s) = F0.5,0.5(a2s) → 0, as s →∞

where F0.5,0.5 is the CDF of Beta(1/2, 1/2). Hence the Jeffreys prior con-
verges to the point mass at ρ = 1, hardly noninformative by any measure.
Note here the convergence is rather rapid at the exponential rate as (but
not uniformly), because lims→∞ Fs(a)/[2as/π] = 1. Even for s = 2, the prior
median of ρ is 0.51/4 = 0.84, and hence the Jeffreys prior strongly prefers
values closer to the unit root than those that are away from it. Figure 5
shows how skewed the prior densities are even for modest spacing s.

The Jeffreys prior has often been used in the literature because it is as-
sociated with “objective Bayesian analysis” (e.g., Phillips, 1991). Putting
aside the philosophical quibble whether a meaningful “objective analysis”
is ever possible (e.g., Berger and Yang, 1994), we can see from the above
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example that the Jeffreys prior can certainly put strong preference over one
region of the parameter space than another, in sharp contrast to a layman’s
understanding of the concept of “objective prior” or non-informative prior.
In the context of autoregressive models, this phenomenon is well-known and
has been much debated, but primarily in the case of explosive region or at
least (near) unit-root cases, that is, when |ρ| ≥ 1 (see Uhlig, 1994a, b; and
Kass and Wasserman, 1996, and the references therein). Our example shows
that the same phenomenon exists even within the stationarity region |ρ| < 1,
once we allow ourselves to go beyond consecutive sampling.

We emphasize, however, that although we use (6.12) to directly assign
a univariate prior for ρ, because (6.12) measures the marginal information
for ρ, the prior specified above for ρ is (asymptotically) equivalent to the
marginal prior for ρ derived from the joint Jeffreys prior on (ρ, σ2). Had we
used the conditional Jeffreys prior p(ρ|σ2) pretending σ2 is known, then the
Fisher information will not strongly prefer ρ = 1 even as s →∞ because the
information from fitting the variance part of AR(1) for estimating |ρ| < 1 will
not be consumed by the need for estimating σ2, since it is already (assumed)
known. In this sense, one could attribute our finding as another example of
the unreliability of multivariate Jeffreys prior (Kass and Wasserman, 1996).
But as also noted in Kass and Wasserman (1996, Section 3.5), even in the
case of univariate ρ (i.e., σ2 is known), the Jeffreys prior puts too much
weight in regions that correspond to nonstationarity. Similarly, Berger and
Yang (1994) reported the difficulties with finding “objective” prior for ρ
“even in the comparatively simple case of known σ2.”

Our feeling is that a key issue with the use of the Jeffreys prior lies in
how the Fisher information is determined by the patterns of the data, not
merely the size of the data. In general the use of data-dependent priors has
been strongly discouraged other than for certain specific theoretical purposes
(e.g., Wasserman, 2000, Mukerjee, 2008). In contrast, the dependence of the
Jeffreys prior on the data pattern, which clearly is an important aspect of
the observed data, has not received the same treatment (but see Kass and
Wasserman’s (1996, Section 3.5) emphasis on how the Jeffreys prior depends
on the sample space). There may well be theoretically justifiable and prac-
tically useful principles or at least guidelines to tell us what aspects of the
observed data can be used for constructing priors, e.g., such as when con-
structing “weakly informative” priors (Gelman et. al. 2008), where “weak”
is relative to the information in the data (under a specified likelihood). But
to blindly trust the conventional wisdom that the Jeffreys prior is an “ob-
jective” prior requires one to overlook the common meaning of the phrase
“objective.”
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We conclude with this example to re-iterate the overall message of our pa-
per. That is, serious statistical inference is an enterprise involving science,
engineering, and even a bit of art. As such, it is virtually always wise to
integrate good intuition and conventional wisdom with critical theoretical
thinking and rigorous mathematical derivations whenever feasible. This in-
tegration is critical to ensure that our conclusions are not only scientifically
defensible but also the best possible ones given our limited resources, and
minimally it prevents us from unknowingly producing statistical results that
are seriously inferior to what we expect them to be.
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