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Summary

A sequentially outcome-adaptive Bayesian design is proposed for choosing the dose of an

experimental therapy based on elicited utilities of a bivariate ordinal (toxicity, efficacy)

outcome. Subject to posterior acceptability criteria to control the risk of severe toxic-

ity and exclude unpromising doses, patients are randomized adaptively among the doses

having posterior mean utilities near the maximum. The utility increment used to define

near-optimality is non-increasing with sample size. The adaptive randomization uses each

dose’s posterior probability of a set of good outcomes, defined by a lower utility cut-off.

Saturated parametric models are assumed for the marginal dose-toxicity and dose-efficacy

distributions, allowing the possible requirement of monotonicity in dose, and a copula is

used to obtain a joint distribution. Prior means are computed by simulation using elicited

outcome probabilities, and prior variances are calibrated to control prior effective sample

size and obtain a design with good operating characteristics. The method is illustrated by

a phase I/II trial of radiation therapy for children with brain stem gliomas.
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1. Introduction

We propose a Bayesian phase I/II procedure for sequentially adaptive dose selection based

on a bivariate ordinal (toxicity, efficacy) outcome. The method is based on elicited utili-

ties of the possible outcome pairs (cf. Berger, 1985). Rather than choosing the dose that

maximizes the posterior mean utility, we deal with the well-known “exploration versus

exploitation” dilemma (cf. Sutton and Barto, 1998) by adaptively randomizing patients

among the doses having posterior mean utilities that differ from the maximum by less

than a specified increment. We require this increment to be non-increasing with sample

size, similarly to an “epsilon decreasing” version of an “epsilon greedy” algorithm. The

adaptive randomization (AR) uses each dose’s posterior probability of a set of good out-

comes, defined by an elicited lower utility cut-off. We obtain a bivariate model by first

constructing marginals and using a copula (Nelsen, 1999) to induce association. Aside

from link functions, we do not assume functional forms for dose-toxicity or dose-efficacy

curves, but rather use marginals with saturated parameterizations. We establish a prior by

using elicited outcome probabilities to simulate many very large pseudo samples, with the

mean parameter vector of the pseudo posteriors used as the prior mean parameter vector,

and the prior variances calibrated to control prior effective sample size.

Because we consider bivariate ordinal outcomes, our methodology differs substantively

from phase I/II designs based on trinary or bivariate binary outcomes (cf. Thall and

Russell, 1998; O’Quigley, Hughes, and Fenton, 2001; Braun, 2002; Thall and Cook, 2004;

Bekele and Shen, 2005; Zhang, Sargent and Mandrekar, 2005; Dragalin and Fedorov, 2006;

Thall, Nguyen and Estey, 2008). Our design may be considered a phase I/II, utility-based

2



generalization of several Bayesian phase I methods. Bekele and Thall (2004) use a contin-

ual reassessment method (CRM, O’Quigley et al., 1990) type criterion based on posterior

means of summed severity scores of multivariate ordinal toxicities; however, their method-

ology does not incorporate efficacy, maximize a utility, or use AR. For the case of one

ordinal toxicity, a method similar to that of Bekele and Thall, but using quasi-likelihood, is

proposed by Yuan, Chappell and Bailey (2007), while Van Meter et al. (2011) assume a pro-

portional odds model (McCullagh, 1980) and extend the CRM. Our methodology is similar

to the phase I/II design of Houede et al. (2010) for choosing dose pairs of two agents, with

the differences that we incorporate AR, require more complex dose admissibility criteria,

and use a model with much weaker assumptions.

In Section 2, we describe the motivating trial. The probability model is presented in

Section 3. Section 4 gives definitions of the utility function, dose admissibility criteria,

AR probabilities, and the design. Application to the RT trial is described in Section 5,

including simulation studies of the method’s sensitivity to dose admissibility requirements,

the use of AR, maximum sample size, prior variability, and number of doses studied. We

close with a discussion in Section 6.

2. A Radiation Therapy Trial

Diffuse intrinsic pontine gliomas (DIPGs) are aggressive brain tumors for which no treat-

ment with substantive anti-disease effect currently exists. DIPGs account for about 75% of

brain stem gliomas in children, and the median age of DIPG patients is 5 years. Radiation

therapy (RT) is the standard treatment, but nearly all patients experience disease progres-

sion within eight months after RT and median survival is less than one year. However, the

dose-toxicity and dose-efficacy profiles of RT for this disease are not well understood.

This paper was motivated by the desire to design a phase I/II trial of RT for DIPG

patients. The trial, which uses the dose-finding design described here and is ongoing at
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this writing, includes children with DIPGs who previously received RT with or without

chemotherapy and currently have progressive disease. RT is administered by separating a

total dose of absorbed radiation (in gray units, Gy) into fractions that are given serially.

The biologically equivalent dose is BED = (total dose)*(1 + d/κ), where d = dose/fraction

and κ is a constant corresponding to the type of tissue being irradiated. This model is

based on the empirical observation in animal models that the empirical proportion of cells

surviving radiation can be fit closely by a linear-quadratic function of per fraction dose

(Fowler, 1989), with the assumption that cell killing of successive fractions is independent.

For brain tissue, κ = 3, and the three combinations of (total dose, d) to be studied in

the DIPG trial are (24,2.0), (26.4, 2.2), and (30.8,2.2), so the corresponding BEDs are

40.00, 45.76, and 53.39. Toxicity is defined on a 4-level ordinal scale as Low, Moderate,

High, or Severe, with each level defined in terms of fatigue, nausea/vomiting, headache,

skin inflammation or desquamation, blindness, and brain edema or necrosis, each evaluated

during 42 days from the start of therapy. Efficacy is scored at day 42, and is defined as the

sum of three indicators of any improvement, compared to baseline, in (i) clinical symptoms,

(ii) radiographic appearance, or (iii) quality of life. Thus, an efficacy score of 0 corresponds

to no improvement, 1 to improvement in one of the three categories, and so on.

For our general regime, index the outcomes by k = 1 for toxicity and k = 2 for efficacy,

with Yk = 0, 1, · · · ,mk identifying the observed ordinal levels. For toxicity, Y1 = 0 denotes

the least severe and m1 the most severe level, while Y2 = 0 denotes the worst and m2

the best level of efficacy. In the RT trial, m1 = m2 = 3. Our proposed dose-finding

method requires elicited utilities of all possible values yyy = (y1, y2) of the outcome pairs

YYY = (Y1, Y2). The elicited utilities U(y1, y2) for all 16 possible outcomes in the RT trial

are given in Table 1. The RT trial utility has the required property that U(y1, y2) must

increase as either toxicity severity level decreases or efficacy increases. While it may seem

counterintuitive that outcomes with efficacy score Y2 = 0 should be given positive utilities,
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because the prognosis of the patients in this trial is very poor and treatment is in large

part palliative, the oncologists who organized the trial consider achieving a lower level of

toxicity to be more desirable for any level of efficacy. When we questioned the oncologists

about this critical point during the utility elicitation process, they explained that, even

when the efficacy outcome score equals 0, there still is some palliative effect, that is, the

treatment still is useful. Consequently, when the efficacy score is 0, lower toxicity severity

levels are far more desirable, as the first row of Table 1 shows.

3. Probability Models

Index doses by X = {1, · · · , J}. We will construct a model for YYY = (Y1, Y2) as a function

of x ∈ X by formulating marginals for [Y1 | x] and [Y2 | x] and using a copula (Nelsen,

1999) to obtain a joint distribution. Let θθθ denote the model parameter vector, with θθθk the

subvector characterizing the marginal of [Yk | x]. Denote

λk,y,x = Pr(Yk ≥ y | Yk ≥ y − 1, x, θθθk) and πk,y,x = Pr(Yk = y | x, θθθk)

for y = 1, · · · ,mk and k=1,2. Given a monotone increasing link function g, our marginal

model assumption is simply

g(λk,y,x) = θk,y,x, y = 1, ...,mk, k = 1, 2, (1)

with all θk,y,x real-valued. Thus, θθθk = (θθθk,1, · · · , θθθk,mk
), denoting θθθk,y = (θk,y,1, · · · , θk,y,J).

The marginal model (1) is saturated since it has mk parameters for each x, with dim(θθθk)

= Jmk, which is the number of πk,y,x’s needed to specify the J marginals of Yk for all x.

Equation (1) ensures that the distribution {πk,y,x, y = 0, 1, · · · ,mk} is well defined for

each k and x. This follows from the fact that, denoting π̄k,y,x = Pr(Yk ≥ y | x, θθθk), the

unconditional and conditional probabilities are related by the recursive formula

π̄k,y,x =

y∏
r=1

λk,r,x =

y∏
r=1

g−1(θk,r,x), y = 1, · · · ,mk. (2)
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Consequently, π̄k,y,x is decreasing in y for each x, Jmk-dimensional real-valued θθθk, and

monotone link g. The marginal probabilities are given by

πk,y,x = (1− λk,y+1,x)

y∏
r=1

λk,r,x, y = 1, · · · ,mk − 1,

πk,mk,x =

mk∏
r=1

λk,r,x. (3)

Given the marginals, we obtain a joint distribution of [Y1, Y2 | x] by using a bivariate

Gaussian copula, Cρ(v1, v2) = Φρ{Φ−1(v1),Φ−1(v2)} for 0 ≤ v1, v2 ≤ 1, where Φρ is the

bivariate standard normal cdf with correlation ρ, and Φ is the univariate standard normal

cdf. This is used to define the joint distribution as

πππ(yyy| x, θθθ) = Pr(Y = yyy | x, θθθ) =
2∑

a=1

2∑
b=1

(−1)a+bCρ(u1,a, u2,b)

where uk,1 = Pr(Yk ≤ yk | x, θθθk) and uk,2 = Pr(Yk ≤ yk − 1 | x, θθθk). We chose the

Gaussian copula for its tractability. Other copulas, such as the Gumbel or Clayton, may

be used (Nelsen, 1999). Denoting the data from the first n patients in the trial, by Dn =

{(Y1, x[1]), · · · , (Yn, x[n])} n = 1, · · · , Nmax, the likelihood is the product

L(Dn | θθθ) =
n∏
i=1

m1∏
y1=0

m2∏
y2=0

{
πππ(y1, y2| x[i], θθθ)

}I(Yi,1=y1,Yi,2=y2)
and the posterior is p(θθθ | Dn) ∝ L(Dn | θθθ)prior(θθθ).

The model parameter vector θθθ = (θθθ1, θθθ2, ρ) has dimension p = J(m1 + m2) + 1, and

characterizes a total of J(m1+m2+m1m2) bivariate probabilities. This parameterization is

feasible for many cases arising in practice, with (J,m1,m2) = (3,2,2), (3,3,3), (4,3,2), (4,3,3),

(5,2,2), (5,3,2), (5,3,3) giving corresponding p = 13, 19, 21, 25, 21, 26, 31. For m1 = m2 = 1,

which is the bivariate binary outcome case, p = 2J+1 and θθθk = (θk,1, · · · , θk,J), for k = 1, 2.

How π̄1,y,x and π̄2,y,x may vary with x depends on both the therapeutic modality and

the definitions of toxicity and efficacy. An important case is that where it is necessary

to assume that π̄k,y,x is increasing in x for one or both outcomes. This assumption is
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appropriate both for cytotoxic agents and for RT, but it may not be realistic for cytostatic

or biologic agents. Imposing the constraints θk,y,1 ≤ θk,y,2 ≤ · · · ≤ θk,y,J implies that π̄k,y,x

increases in x, for each y = 1, · · · ,mk due to the monotonicity of g, by equation (2). Rather

than fitting the model (1) with real-valued θk,y,x’s subject to these constraints, to reduce

computation we obtain monotonicity of π̄k,y,x in x by re-parameterizing the model as

θk,y,x = µk,y +
x∑
z=2

γk,y,z for all x = 2, · · · , J (4)

with real-valued µk,y ≡ θk,y,1 and γk,y,x ≥ 0 for all k, y, and x = 2, · · · , J. Thus, θθθk,y =

(µk,y, γk,y,2, · · · , γk,y,J), and collecting terms we denote θθθ = (µµµ, γγγ). The parameterization

(4) borrows strength between doses quite strongly because, for distinct doses x and z, θk,y,x

and θk,y,z share many parameters.

The model πππ(yyy| x, θθθ) must do a good job of reflecting the way that the posterior mean

utility, defined below in Section 4.1, changes as a function of dose. Intuitively, it may seem

that the number of parameters p in the range 13 to 31 is impractically large for dose-finding

trials with small sample sizes. This is not the case, essentially because the information in

a bivariate ordinal outcome YYY is much greater than that provided by a single ordinal Y

or a binary outcome, which is used conventionally in phase I trials. Since our goal is

to find a dose with high mean utility, if the model is tractable then the value of p is not

critical. For example, in the case (J,m1,m2) = (5,3,3) where p = 31, the algorithm (Section

4.3, below) for computing a prior from elicited values works quite well, implementing the

MCMC algorithm for computing posteriors is not problematic, and the design performs

well across a large set of different dose-outcome scenarios.

When using a utility U(YYY ) to quantify the desirability of a bivariate ordinal patient

outcome YYY , conventional generalized linear models (GLMs, McCullagh and Nelder, 1972)

for the marginals may not be sufficiently refined to distinguish reliably between doses. This

is especially problematic when a middle dose has the highest utility, which can easily be the

case when both π̄1,y,x and π̄2,y,x increase with x. The family of GLMs for ordinal Yk given
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by g(π̄k,y,x) = αk,y+βkx with αk,y decreasing in y, which is the proportional odds model if g

is the logit link, may not be sufficiently flexible for dose-finding because a single dose effect

βk is assumed for all levels of Yk. The more general form g(λk,y,x) = αk,y +βk,yx, subject to

appropriate monotonicity constraints, may provide more flexibility. An alternative model

might replace λk,y,x in (1) by the unconditional probability π̄k,y,x, so that g(π̄k,y,x) = θ′k,y,x,

which requires that θ′k,y,x must increase in y for k = 1, 2 and all x. In the case where π̄k,y,x

must increase in x, however, one must impose two sets of monotonicity constraints, one

in x and the other in y, which limits tractability for adaptive dose-finding. Sensitivity

analyses using different marginal distributions showed that, in terms of performance of

the dose-finding method, no one model among those described above is uniformly better

than the others. However, our simulations (Table 6) showed that, in terms of both dose

selection and choosing desirable doses for patients during the trial, the worst performance

of the model with saturated marginals was better than the worst performance of the model

with proportional odds marginals.

4. Decision Criteria and Trial Design

4.1 Utilities

Denote the elicited utility of outcome y by U(y). The mean utility of dose x given θθθ is

u(x, θθθ) = EY{U(Y) | x, θθθ} =

m1∑
y1=0

m2∑
y2=0

U(yyy)πππ(yyy | x, θθθ).

The posterior mean utility is

φ(x,Dn) = Eθθθ{u(x, θθθ) | Dn} =

m1∑
y1=0

m2∑
y2=0

U(yyy)

∫
θθθ
πππ(yyy | x, θθθ)p(θθθ | Dn)dθθθ. (5)

Note that (5) reflects the physicians’ utilities and the observed data by averaging over

the posterior. We denote the dose that maximizes φ(x,Dn) by xoptn . Because U(y) is a

patient utility, maximizing φ(x,Dn) is very different from the more common Bayesian ap-

proach of choosing x to optimize some posterior function of the Fisher information matrix

8



(cf. Haines, Perevozshaya and Rosenberger, 2003; Dragalin and Federov, 2006). In the

context of phase I trials, Bartorff and Lai (2010) address the problem of “individual ver-

sus collective ethics” by considering an objective function including components for both

current and future patients. In our setting, always choosing xoptn based on φ(x,Dn) alone

is an example of a “greedy algorithm,” which in general is a sequentially adaptive decision

rule that always takes the locally optimal action at each stage. Motivated by both ethical

and practical considerations, we next introduce additional dose acceptability criteria, and

an AR procedure, to improve this greedy algorithm.

4.2 Dose Acceptability and Adaptive Randomization

Simply maximizing φ(x,Dn) ignores the undesirable but important possibility that all

doses are too toxic. To control the risk of toxicity, we elicit the level y∗ of toxicity considered

to be unacceptable by the physicians, and an accompanying fixed limit π∗1 on the probability

π̄1,y∗,x of toxicity at or above y∗. We say that a dose x is unacceptably toxic if

Pr(π̄1,y∗,x > π∗1 | Dn) > pU , (6)

where pU is an upper probability cut-off, usually in the range .80 to .95. In the simplest

case where Y1 is a binary indicator of toxicity at or above some specified severity level,

so that y = 0 or 1 denote the absence or presence of toxicity defined in this way, y∗ = 1

by default. The inequality (6) says that x has a high posterior probability of producing

an unacceptably high level of toxicity. We will limit all dose assignments to the set of

acceptably safe doses, Asafen , defined to be all x ∈ X for which (6) is not the case. This is

similar in spirit to the safety requirements used by Thall and Cook (2004) and Braun et

al. (2007), and “escalation with overdose control” proposed by Babb, Rogatko and Zacks

(1998) for phase I trials.

A very important practical problem when using φ(x,Dn) to select doses adaptively is

that, in some cases, little or no information may be obtained for the dose that actually
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has the highest true mean utility, u(x, θθθtrue). This occurs when the algorithm that chooses

x by maximizing φ(x,Dn) repeatedly assigns a dose that actually is suboptimal, and does

not escalate to higher levels that include the true optimal dose. The general phenomenon

of a greedy sequential decision procedure becoming stuck at a suboptimal treatment is

well-known. A common solution for this problem is to randomly assign some patients

to suboptimal treatments. This distributes patients more evenly among treatments and

consequently more is learned about the design space, often with a resulting improvement

in the method’s reliability. To do this in an ethical way for adaptive dose-finding, we use

the following constrained AR procedure.

Let {δn, n = 1, · · · , Nmax} be a non-increasing sequence of differences in the utility

domain. We define the set of δn-optimal doses to be

Aδn = {x ∈ X : |φ(x,Dn)− φ(xoptn ,Dn)| ≤ δn}. (7)

This is the set of doses having posterior mean utility within δn of the maximum value.

The sequence {δn} quantifies what is meant by posterior mean utilities being “close” in

expression (7), and we require it to be non-increasing with n to accommodate the decreasing

variability in the posteriors of the u(x, θθθ)’s as n increases. Restriction of the AR to doses

in Aδn is motivated by both ethical considerations and the practical fact that the posteriors

of the utilities {u(x, θθθ), x ∈ Asafen } may be quite disperse, especially for the small values of

n in a dose-finding trial. Moreover, φ(x,Dn) may be nearly flat around its maximum, with

the numerical superiority of φ(xoptn ,Dn) over φ(x,Dn) for one or more x 6= xoptn quite small.

Our simulations, summarized below in Section 5, show that it sometimes is more ethical

to treat some patients at suboptimal doses having φ(x,Dn) near φ(xoptn ,Dn) because on

average, in many scenarios, this leads to more patients in the trial being treated at doses

having higher utilities.

A third acceptability criterion that may be used is to require that a dose should not be
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unlikely to have the highest utility. We say that a dose x is unlikely to be best if

Pr
[
u(x, θθθ) = max

z∈X
{u(z, θθθ)} | Dn

]
< pL (8)

for a small lower probability cut-off pL. We denote the set of doses that do not have this

property by Aminn . A dose in Aminn is admissible in the sense that it satisfies the minimality

requirement that it has at least a non-trivial probability of having the highest utility.

Combining the three criteria (6), (7), and (8), we define the set of acceptable doses to be

An = Asafen ∩ Aδn ∩ Aminn . (9)

Thus, a dose is acceptable if it (i) has acceptable toxicity, (ii) has posterior mean utility

that is δn-close to the maximum, and (iii) is not unlikely to have the highest posterior

utility.

Our design randomizes patients adaptively among the doses in An. This may be done

using many different criteria. An ethically attractive approach is to define AR probabilities

in terms of a set of “good” outcomes, defined as G = {yyy : U(yyy) ≥ U}, where the lower limit

U is elicited from the physicians who provided the utilities. Given G, the probability of a

good outcome for a patient treated with dose x is Pr(YYY ∈ G | x, θθθ). Denoting the posterior

means µG(x,Dn) = E{Pr(YYY ∈ G | x, θθθ) | Dn}, we randomize a patient to dose x ∈ An with

probability

r(x,Dn) =
µG(x,Dn)∑
z∈An

µG(z,Dn)
. (10)

Thus, the dose-finding method includes the requirements that it only assigns doses that are

safe and δn-optimal, as defined by (6) and (7), and that satisfy the minimality requirement

(8), and it uses the good outcome set G to determine the AR probabilities (10).

4.3 Establishing a Prior

Denote the normal distribution with mean µ and variance σ2 by N(µ, σ2), and denote

the normal distribution truncated below at 0 by N0(µ, σ
2). For the prior p(θθθ | θ̃θθ), we
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assume µk,y ∼ N(µ̃k,y, σ̃
2
µ,k,y) and γk,y,x ∼ N0(γ̃k,y,x, σ̃

2
γ,k,y,x). The numerical values of the

hyperparameters θ̃θθ = (µ̃µµ, γ̃γγ, σ̃σσ2
µ, σ̃σσ

2
γ) may be established from elicited probabilities using the

following algorithm, similar to that given in Thall, et al. (2011).

Step 1. Assume a non-informative pseudo-prior on θθθ with all entries N(0, σ2
o) for large σ2

o .

Step 2. Use the elicited prior probabilities to simulate a large pseudo-sample of size N

balanced equally among the doses.

Step 3. Compute the pseudo-posterior from the pseudo-prior and pseudo-sample, and

record the pseudo-posterior mean.

Step 4. Repeat steps 2 and 3 M times, and set the prior mean (µ̃µµ, γ̃γγ) of θθθ equal to the mean

of the M pseudo-posterior means.

Step 5. Using the effective sample size (ESS) as a criterion, calibrate the values of (σ̃σσ2
µ, σ̃σσ

2
γ)

to obtain ESS values of the θk,y,x’s in the range 0.20 to 1.0.

As a practical guideline, this algorithm may be applied effectively with N = 100J , i.e.

100 observations per dose, M = 1000 pseudo-samples, and pseudo-prior variances σ2
o in

the range 102 to 1002, with the particular value of σ2
o chosen to ensure that the pseudo-

posteriors are insensitive to the pseudo-prior. In practice, one or two numerical values may

be used for the entries of (σ̃σσ2
µ, σ̃σσ

2
γ). If desired, an elaboration of Step 5 is to simulate the

trial for each of several values of the hyper variances to ensure that the trial will have

good operating characteristics, as well as the prior being non-informative in terms of ESS.

One overall ESS of p(θθθ | θ̃θθ) may be computed using the formal method of Morita, Thall,

and Mueller (2008) or, alternatively, one may approximate the prior of each πk,y,x as a

beta(a, b), set its ESS equal to a+ b, and average these values to obtain a single summary

ESS. For the association parameter ρ in the Gaussian copula, a uniform prior on (-1, +1)

may be assumed.
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4.4 Trial Conduct

The trial is conducted as follows. An initial cohort is treated at a starting dose chosen

by the physicians. For all subsequent cohorts, once the posterior is updated based on the

observed outcomes of previous patients, if An is empty then the trial is stopped and no dose

is chosen; otherwise, patients are randomized among the doses in An using the updated

AR probabilities given by (10). A rule superseding the above is that no untried dose may

be skipped when escalating. At the end of the trial, if An is not empty, xoptNmax
is selected.

To summarize, the design requires the following quantities to be elicited from the physi-

cians: the prior means of all πk,y,x’s, the utilities, the cut-off U that determines G, the safety

parameters y∗ and π∗1, a starting dose, and the number of patients treated at the starting

dose. Given this information, prior parameters must be determined from the elicited values,

e.g. by using the simulation-based approach described earlier, and the additional design

parameters pU , pL, {δn}, Nmax, and cohort size must be specified. These parameters, along

with prior variances, should be calibrated by simulating the trial to obtain good operating

characteristics.

5. Application to the Radiation Therapy Trial

5.1 Trial Design

For the RT trial, since m1 = m2 = 3, the distribution {πk(yyy | x, θθθ), y1, y2 = 0, 1, 2, 3}

is determined by 15 probabilities for each x. Since J = 3, there are J(m1m2 +m1 +m2) =

45 bivariate probabilities. For each k and x, the marginals (3) are given by

πk,0,x = 1− λk,1,x

πk,1,x = λk,1,x − λk,1,xλk,2,x

πk,2,x = λk,1,xλk,2,x − λk,1,xλk,2,xλk,3,x

πk,3,x = λk,1,xλk,2,xλk,3,x.
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We assume a logit link, so λk,y,x = eθk,y,x/(1 + eθk,y,x). For each k = 1, 2 and y = 1, 2, 3, θθθk,y

= (µk,y, γk,y,2, γk,y,3), so dim(θθθk) = 9 and p = dim(θθθ) = 19.

The prior was obtained from the elicited prior mean probabilities in Table 1 using the

algorithm described in Section 4.3. We simulated 1000 pseudo samples, each of size 300

with 100 patients in each pseudo sample assigned to each dose. For each simulated data

set, a pseudo posterior was computed starting with a pseudo-prior on θθθ with each θk,y,x ∼

N(0, 602), and the mean of the 1000 pseudo posterior means was used as the prior means

µ̃k,y and γ̃k,y,x. The standard deviations of the θk,y,x’s were calibrated by approximating the

prior of each πk,x,y with a beta(a, b) and using ESS = a + b. Setting all σ̃µ,k,y = σ̃γ,k,y,x =

σ̃ = 6 gave ESS values ranging from 0.31 to 0.70, with mean ESS = 0.42.

For the safety criterion, Asafen , the physicians specified y∗ = 3 (severe toxicity) and π∗1

= 0.10. Using the conservative upper cut-off pU = 0.80, a dose x is unacceptably toxic if

Pr(π1,x,3 ≥ .10 | Dn) > .80. The lower cut-off pL = 0.10 was used to define Aminn , after

studying effects of the values pL = 0.05, 0.10, 0.15 in preliminary simulations. An initial

cohort of 3 patients will be treated at x = 1 (BED = 40.00), with subsequent cohorts of

size 1 and the AR started at the 4th patient. A maximum of Nmax = 30 patients will be

treated, chosen in part because an accrual rate of 6 to 10 patients per year is anticipated, so

it will require 3 to 5 years to complete the trial. The physicians specified the lower utility U

= 25 to determine the good outcome set, which is used to define the AR probabilities. The

nine outcomes considered to be good by this criterion are shown by the gray shaded values

in Table 3. After a preliminary sensitivity analysis examining the design’s behavior by

simulation for various sequences {δn}, including 10 ≤ δn ≤ 30 and several non-decreasing

functions, it was decided to use the step function δn = 20 for 4 ≤ n ≤ 15 and δn = 15

for 16 ≤ n ≤ 30 to define Aδn. All posterior quantities were computed using MCMC with

Gibbs sampling (Robert and Cassella, 1999). All simulations are based on 5000 iterations

of each case studied.
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5.2. Simulation Results

Using this design, we simulated the trial under eight scenarios, each determined by a set

of assumed true probabilities, {πtruek,y,x}, given in Figure 1. Scenario 1 is based on the elicited

prior means, which give equal utility 64.6 to x = 1 and 2 and utility 57.0 to x = 3. Scenario

2 has steeply increasing utility with x = 3 best. Scenario 3 has steeply decreasing utility

with x = 1 best, the middle dose x = 2 is best in Scenario 4, and the utility is V-shaped in

Scenario 5 with x = 3 best. No dose is acceptably safe in Scenario 6. Scenario 7 is similar

to Scenario 4 in terms of utilities, but has slightly higher toxicity and efficacy probabilities.

The utility is V-shaped in Scenario 8 with x = 1 best. In each simulation scenario, the true

marginal probabilities {πtruek,y,x} do not depend on the assumed model, although we use the

copula to determine correlations. The Gaussian copula correlation parameter ρtrue = 0.10

was used throughout. The true utilities utrue(x) are determined by the assumed {πtruek,y,x},

ρtrue, and the elicited utilities U(yyy) in Table 1.

The results of simulating the RT trial design under Scenarios 1 – 8 are summarized

in Table 3. In Scenario 6, where no dose is acceptably safe and the true severe toxicity

probabilities are 0.25, 0.28, 0.30 at the three doses, the method correctly stops early and

chooses no dose 91% of the time, and treats on average 14.6 patients. Modifying Scenario

6 so that the true severe toxicity probabilities at the three doses are the slightly higher

values .30, .35, .40, the stopping probability is 98% and the mean sample size drops to

11.6 patients. In all of the other 7 scenarios, the selection probabilities reflect the utilities

quite closely. The algorithm’s selection reliability is quite striking in Scenarios 5 and 8,

which have V-shaped utilities with the middle dose x = 2 least desirable. The sample size

distributions are biased toward lower doses in all scenarios, reflecting the initial cohort of

3 patients at x = 1, the do-not-skip rule, and the fact that the prior was biased toward the

lower doses, which favors AR to these doses early in the trial.

While Table 3 shows that our method has very desirable properties for the RT trial
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design, since it relies on three particular admissibility criteria and AR, it is important to

assess each design component’s effect on the method’s performance. We thus simulated

four alternative versions of the procedure. Method 1 is our proposed procedure with An

given by (9). Method 2 drops the minimality requirement Aminn from An. Method 3 drops

both the minimality requirement Aminn and the requirement Aδn in the AR that a dose must

have φ(x,Dn) that is δn–close to the optimum. Thus, Methods 1, 2, and 3 all use AR based

on the posterior probabilities r(x,Dn) of a good outcome, but with different definitions of

an acceptable dose. Method 4 drops the AR entirely, and uses the greedy algorithm that

simply chooses x to maximize φ(x,Dn), subject only to the safety constraint on toxicity.

Thus, An = Asafen for both Methods 3 and 4, but Method 4 does not use AR. The results

of this additional comparative simulation are given in in Table 4. To present the results

in a more compact way than giving four versions of Table 2, one for each version of the

method, instead we use the following two summary statistics to quantify each method’s

performance. For each scenario, let utrue(xselect) denote the true utility of the final selected

dose, and umax and umin the largest and smallest possible true utilities among all x ∈ X .

A statistic that quantifies how well the method selects a final dose for future patients is

Rselect =
utrue(xselect)− umin
umax − umin

,

the proportion of the difference between the utilities of the best and worst possible choices

that is achieved by xselect. A similar statistic that quantifies how well the method assigns

doses to patients throughout the trial is

Rtreat =
1
N

∑N
i=1 u

true(x[i])− umin
umax − umin

,

where utrue(x[i]) is the true utility of the dose given to the ith patient, and N is the achieved

final sample size. Both statistics have range [0, 1], with a larger value corresponding

to better overall performance. Thus, Rselect quantifies future patient benefit while Rtreat

quantifies the benefit to the patients in the trial.
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To interpret the results in Table 4, we first note that all four methods are safe in that

they stop and select no dose between 90% and 93% of the time in the toxic Scenario 6.

This is as expected, since all of the methods include the safety requirement (6). For the

other seven scenarios, Table 4 shows that Method 4, the greedy algorithm with the safety

requirement but no AR, may perform either extremely well (in Scenarios 1, 3, and 8),

moderately well (in Scenarios 4 and 5), or extremely poorly (in Scenarios 2 and 7). That

is, Method 4 is inconsistent and sometimes yields disastrous results. In particular, Method

4 gives the extremely small values Rtreat = 0.10 in Scenario 2 and Rtreat = 0.20 in Scenario

7, compared to much larger values for Methods 1 – 3. Thus, depending on the actual

state of nature, the greedy algorithm without AR may perform either very well or very

poorly in terms of benefit to the patients in the trial. In contrast, across all scenarios

considered Methods 1 – 3 are all much more reliable, with no scenarios where any of these

methods have extremely poor performance. Thus, the addition of AR acts like an insurance

policy against disaster, but with the price being reduced performance in terms of Rselect

and Rtreat in some cases. Comparing Methods 1, 2, and 3, the greatest effect of adding

the admissibility constraints Aδn and Aminn is that they both increase Rtreat substantially

in almost all scenarios. Thus, these two dose admissibility constraints have the effect of

making the dose-finding algorithm more ethically attractive for the patients in the trial.

In contrast, in terms of future patient benefit, Table 4 shows that most of the advantage

over Method 4 in Scenarios 2, 4, 5, and 7 is due to including AR, since the Rselect values

for Methods 1,2, and 3 about the same in these scenarios.

Our motivating application is somewhat atypical in that most phase I/II trials have

more than 3 dose levels. To more fully illustrate the methodology, we also include a

simulation study with J = 5 doses. The model, which now has p = 31 parameters, and

the design used for this simulation are very similar to those of the RT trial, but we assume

Nmax = 40. With regard to choice of Nmax in practice, it should be kept in mind that a
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phase I/II trial replaces the more conventional approach of conducting phase I based on

toxicity only and phase II based on efficacy only. Thus, Nmax = 40 is quite reasonable for

a phase I/II trial. All numerical values in the prior and model corresponding to the new

doses x′ ∈ {1, 2, 3, 4, 5} were obtained by matching values for x′ = 1, 3, 5 to x = 1, 2, 3,

respectively, and interpolating to obtain values for x′ = 2 and x′ = 4. This simulation is

summarized in Table 5, which shows that the qualitative behavior of the design for J = 5

dose levels is very similar to what is shown for J = 3 in Table 3.

A natural question is how well the method works using a more conventional model with

fewer parameters. To answer this, we also simulated the trial assuming a bivariate model

with PO marginals defined by logit(π̄k,y,x) = αk,y + βkx with αk,1 > αk,2 > αk,3 so θθθ =

(α1,1, α1,2, α1,3, α2,1, α2,2, α2,3, β1, β2, ρ) and p = 9. The prior for this model was obtained

similarly to that of the 19-parameter model, using the method described in Section 4.3. The

results are summarized in Table 6, which shows that the simpler model gives a design with

greatly inferior performance in Scenarios 1, 4, 6, and 7, superior performance in Scenarios

2 and 5, and the comparative results are mixed in Scenarios 3 and 8. This illustrates

the point that, in the present setting, no model is uniformly best. For the model with

saturated marginals, excluding Scenario 6 where no doses are acceptable, Rselect has range

[0.64, 0.87] and Rtreat has range [0.45, 0.84], whereas the proportional odds model has

corresponding ranges [0.32, 0.92] and [0.30, 0.82]. Thus, the saturated model performs

much more consistently across a diverse set of scenarios, with far better worst-case results

than the simple model.

6. Discussion

In our proposed design, we have modified the approach of maximizing the posterior mean

utility by imposing several dose acceptability criteria and using AR among near-optimal

doses. As shown in Table 4, each modification improved the method’s performance, in terms
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of both reliability and ethical desirability. While it may seem counterintuitive, in some

scenarios randomizing patients to interimly sub-optimal doses actually increases the average

utility of the doses assigned to patients throughout the trial. We also found that using a

model with saturated marginals gives a design with more consistent overall performance

compared to a model with conventional proportional odds marginals.

Several questions remain, and are areas for future investigation. In principle, the utility

function might be generalized to include information, monetary costs, or a future patient

horizon. Since these utilities have qualitatively different ranges, combining them to actually

conduct a trial is a difficult practical and ethical problem (cf. Dragalin and Fedorov, 2006;

Bartroff and Lai, 2010). Other issues include the use of bivariate event times as outcomes

(cf. Yuan and Yin, 2009), and addressing the more general problems of optimizing a

two-agent combination or both dose and schedule (Braun, et al. 2007).
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Table 1. Elicited consensus utilities U(y1, y2) for all 16 possible patient outcomes (y1, y2)

= (Toxicity severity, Efficacy score) in the radiation therapy trial. The gray-shaded utilities

identify the set of “good” outcomes, defined as having utility ≥ 25.

Toxicity Severity

Low Moderate High Severe

0 50 25 10 0

Efficacy 1 85 50 15 5

Score 2 92 60 20 7

3 100 75 25 10
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Table 2. Elicited prior mean marginal toxicity severity and efficacy score probabilities for

the model used in the radiation therapy trial.

Y1 = Toxicity Severity Y2 = Efficacy Score

x BED Low Moderate High Severe 0 1 2 3

1 40.00 0.65 0.20 0.12 0.03 0.20 0.40 0.35 0.05

2 45.76 0.55 0.25 0.15 0.05 0.10 0.30 0.45 0.15

3 53.39 0.40 0.30 0.23 0.07 0.10 0.20 0.50 0.20
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Table 3. Simulation results. The assumed true marginal probabilities {πtruek,y,x} defining

each scenario are given in Figure 1. Under each scenario, each tabled dose selection %

and sample size is the mean from 5000 simulated trials. “None” means that no dose was

selected.

Dose utrue(x) % Sel # Pats utrue(x) % Sel # Pats

Scenario 1 Scenario 2

x = 1 64.6 50 15.7 51.1 13 11.3

x = 2 64.6 32 8.5 58.6 22 8.8

x = 3 57.0 17 5.6 63.7 61 9.5

None 1 4

Scenario 3 Scenario 4

x = 1 65.2 63 17.2 61.7 31 13.5

x = 2 60.8 20 7.2 66.2 51 10.4

x = 3 54.6 14 5.0 53.1 15 5.7

None 4 3

Scenario 5 Scenario 6

x = 1 60.7 35 14.7 37.6 6 10.3

x = 2 54.3 9 6.6 37.6 2 2.9

x = 3 65.7 54 8.4 33.4 1 1.4

None 3 91

Scenario 7 Scenario 8

x = 1 52.4 14 11.5 65.4 64 17.4

x = 2 64.4 51 10.7 55.1 9 6.2

x = 3 59.7 32 7.4 59.9 25 6.2

None 4 2
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Table 4. Simulations comparing four alternative dose-finding methods. Method 1 is the

proposed procedure. Methods 2, 3, and 4 successively drop the minimality requirement

x ∈ Aminn , the δn-close requirement x ∈ Aδn, and the use of adaptive randomization (AR).

The numbers in parentheses after Rselect are the percentages of the trial being stopped with

no dose selected.

Method 1 2 3 4

AR Yes Yes Yes No

An Asafen ∩ Aδn ∩ Aminn Asafen ∩ Aδn Asafen Asafen

Scenario Rselect Rtreat Rselect Rtreat Rselect Rtreat Rselect Rtreat

1 0.83 (1) 0.81 0.82 (1) 0.82 0.81 (1) 0.77 1.00 (2) 1.00

2 0.77 (4) 0.50 0.77 (2) 0.44 0.79 (1) 0.42 0.12 (5) 0.10

3 0.77 (4) 0.73 0.76 (4) 0.71 0.76 (4) 0.65 0.99 (5) 0.99

4 0.74 (3) 0.65 0.73 (1) 0.65 0.72 (1) 0.62 0.68 (2) 0.67

5 0.75 (3) 0.56 0.74 (2) 0.50 0.76 (1) 0.50 0.54 (3) 0.53

6 0.92 (91) 0.90 0.91 (90) 0.90 0.89 (90) 0.90 1.00 (93) 1.00

7 0.73 (4) 0.51 0.74 (2) 0.49 0.73 (1) 0.45 0.25 (5) 0.20

8 0.77 (2) 0.68 0.75 (2) 0.64 0.75 (1) 0.58 0.98 (2) 0.97
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Table 5. Simulation results for the 5-dose version of the radiation therapy trial.

Dose utrue(x) % Sel # Pats utrue(x) % Sel # Pats

Scenario 1 Scenario 2

x = 1 64.6 44 15.4 51.1 10 12.0

x = 2 64.6 21 8.8 54.9 10 7.8

x = 3 64.6 16 6.7 58.6 15 7.3

x = 4 60.8 10 5.1 61.2 24 6.8

x = 5 57.0 7 3.9 63.7 39 5.8

None 1 2

Scenario 3 Scenario 4

x = 1 65.2 58 16.9 61.7 27 13.9

x = 2 63.0 18 8.5 64.0 22 8.9

x = 3 60.8 10 6.1 66.2 30 7.7

x = 4 57.7 7 4.5 59.8 15 5.4

x = 5 54.6 5 3.4 53.1 6 3.8

None 3 1

Scenario 5 Scenario 6

x = 1 60.7 36 15.3 37.6 4 10.5

x = 2 57.5 11 7.8 37.7 1 3.2

x = 3 54.3 5 5.7 37.6 1 1.6

x = 4 60.0 13 5.8 35.5 0 0.8

x = 5 65.7 34 5.2 33.4 0 0.4

None 1 94

Scenario 7 Scenario 8

x = 1 52.4 11 11.9 65.4 60 17.8

x = 2 58.5 16 8.4 60.3 13 8.1

x = 3 64.4 33 8.2 55.1 5 5.4

x = 4 62.1 21 6.2 57.5 8 4.7

x = 5 59.7 17 4.9 59.9 14 3.8

None 2 1
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Table 6. Comparison of the performance under the simplified 9-parameter bivariate pro-

portional odds model (p=9) versus the model with saturated marginals (p=31) in the 5-dose

trial. The numbers in parentheses after Rselect are the percentages of the trial being stopped

with no dose selected.

Prop. odds marginals Saturated marginals

Scenario Rselect Rtreat Rselect Rtreat

1 0.55 (3) 0.79 0.87 (1) 0.84

2 0.92 (8) 0.55 0.71 (2) 0.45

3 0.67 (8) 0.82 0.82 (3) 0.72

4 0.32 (9) 0.47 0.74 (1) 0.68

5 0.84 (4) 0.66 0.64 (1) 0.47

6 0.53 (99) 0.92 0.94 (94) 0.94

7 0.50 (11) 0.30 0.70 (2) 0.52

8 0.66 (5) 0.78 0.75 (1) 0.62
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Figure Legends

Figure 1. Fixed probabilities of all outcomes for each of the eight scenarios in the simulation

study.
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