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Our original comment (Lindquist and Sobel, 2011) made explicit the types of assumptions neuroimaging re-
searchers are making when directed graphical models (DGMs), which include certain types of structural
equation models (SEMs), are used to estimate causal effects. When these assumptions, which many re-
searchers are not aware of, are not met, parameters of these models should not be interpreted as effects.
Thus it is imperative that neuroimaging researchers interested in issues involving causation, for example, ef-
fective connectivity, consider the plausibility of these assumptions for their particular problem before using
SEMs. In cases where these additional assumptions are not met, researchers may be able to use other
methods and/or design experimental studies where the use of unrealistic assumptions can be avoided.
Pearl does not disagree with anything we stated. However, he takes exception to our use of potential out-
comes' notation, which is the standard notation used in the statistical literature on causal inference, and
his comment is devoted to promoting his alternative conventions. Glymour's comment is based on three
claims that he inappropriately attributes to us. Glymour is also more optimistic than us about the potential
of using directed graphical models (DGMs) to discover causal relations in neuroimaging research; we briefly
address this issue toward the end of our rejoinder.

© 2011 Elsevier Inc. All rights reserved.

Statistical methods are extremely useful for studying relationships
among variables. Additional assumptions, of which researchers are
often unaware, are needed to justify interpreting these relationships
as indicative of causation, and if these assumptions are not met, the
resulting causal inferences will generally be invalid. In our comment
(Lindquist and Sobel, 2011), we used potential outcomes' notation
(Neyman, 1923 [1990]), which is the standard notation used by stat-
isticians working in the area of causal inference, to explicate addition-
al assumptions that suffice for the parameters of a directed graphical
model (DGM) or structural equation model (SEM) to be interpreted
as causal effects. These assumptions are in addition to those made
when an SEM or DGM is used for descriptive or predictive purposes.
As evidenced by their comments, neither Pearl (Pearl, 2011) nor
Glymour (Glymour, 2011) are enamored of this notation. Unfortu-
nately, neither says anything about the point that we used this nota-
tion to address, namely the need to be explicit about the assumptions
that are made when SEMs (DGMs) are used to make causal infer-
ences, in order to assess when such assumptions are and are not plau-
sible in neuroimaging research. We return to this, our main point,
after addressing, respectively, the specifics raised by Pearl and
Glymour.

Specifics

Pearl

Graphical models have proven to be tremendously useful in a
number of application areas (Jordan, 2004). Our concern herein is
solely with the use of DGM's for making inferences of a special nature,
that is, inferences about causation. In our original comment, following
Robins (2003), we exposited, using potential outcomes' notation, the
assumptions underlying Robins (1986) causal model for directed acy-
clic graphs (DAGs). Robins (1986) called this model the “finest fully
randomized causally interpreted structured tree graph”. As Robins
(2003) showed (see his lemma 1), the assumptions underlying the
causal interpretation of the nonparametric structural equation
model Pearl subsequently put forth are even stronger. Therefore,
the assumptions that we described for giving a causal interpretation
to a DGM apply as well to Pearl's nonparametric structural equation
model, as it is a special case of Robins (1986) model.

To keep matters simple, we took up the DGM corresponding to the
DAG Z→X→Y, with Z binary, Z=0 indicating assignment to the con-
trol group (and no receipt of treatment) , Z=1 indicating assignment
to the treatment group (and receipt of treatment). Under the DGM,
the distribution of (Y, X, Z) factorizes as f(y|x)f(x|z)f(z), as the absence
of a directed arrow from Z to Ymeans that Y is independent of Z, given
X. We stressed that additional assumptions were needed before esti-
mates computed from DGMs should be given a causal interpretation.
We made the following assumptions (see our original comment or
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Hernán and Robins (forthcoming, 2012) for an introduction to poten-
tial outcomes' notation):

(1) the existence of the potential outcomes X(z) and Y(z, x) for all z
and x,

(2) Y(0, x)=Y(1, x), expressing the idea that Z does not directly
cause Y,

(3) X=X(Z), Y(z)=Y(z, X(z)), Y=Y(Z, X(Z)),
(4a) Y z; xð Þ;X zð ÞtZ for all z, x,
(4b) Y z; xð ÞtXjZ for all z, x.

Our point was that by examining these assumptions, researchers
can decide whether or not they are substantively reasonable in the
particular applications they have in mind. Under assumption 1, each
observation has two potential intermediate outcomes, X(0) in the ab-
sence of treatment, and X(1) under treatment. It is important to note
that this does not necessarily mean we can force cases to receive
treatment or not; it is enough to imagine that each case could have
received treatment or not. For example, we can speak of the effect
of a volcano erupting even if we cannot intervene to make the volca-
no erupt. Similar remarks apply to the potential outcomes Y(z, x). As-
sumption 2 states that Z does not directly cause Y. Assumption 3 links
the observed values and the potential outcomes. First, the observed
value X=(1−Z)X(0)+ZX(1), reflecting the fact that we observe
X(0)when Z=0 and X(1)when Z=1. Second, there are two potential
outcomes: Y(0, X(0)) in the absence of treatment, and Y(1, X(1))
under treatment. Third, the observed value Y=(1−Z)Y(0, X(0))
+ZY(1, X(1)). Finally, assumptions 4a and 4b are critical. 4a states es-
sentially that assignment to the treatment or control group behaves
as if randomized, and in many fMRI studies subjects are randomized.
4b states that within the treatment (control) group, assignment to
the mediating variable X behaves as if randomly assigned. But here,
as assignment to X is not actually randomized, one has to ask whether
or not it is reasonable to assume that within the treatment (control)
group, one can treat X as if it were. In our original comment, we
gave an example of a neuroimaging study where such an assumption
would not be reasonable because there was a variable confounding
the X–Y relationship. In this case, causal inferences about direct and
indirect effects' of Z on Y and effects of X on Y using the SEM
(DGM) corresponding to the Z→X→Y DAG will be incorrect. Thus,
we emphasized that researchers need to understand the assumptions
they make when a DGM is viewed as a causal model, and that they as-
sess the plausibility of these assumptions in their particular setting
before proceeding (or not) to use a DGM to make causal inferences.

Pearl states that assumptions 1–4b can be “derived” from a “coun-
terfactual reading” of the “causal chain” Z→X→Y, and he claims that
we are trying to “replace or discredit” this chain. Leaving aside the
fact that a DAG cannot be discredited, assumptions 1–4b constitute
a specification of the causal model that the DAG is intended to repre-
sent. From our point of view, whether or not a researcher wants to
draw a picture to represent 1–4b is not even an issue. What is impor-
tant is that a researcher who does so, thereby using the DAG as a
shorthand, understand that assumptions 1–4b constitute the model
and that when these assumptions are not met, but the model is none-
theless used, erroneous causal inferences will result. For a comple-
mentary perspective, see Dawid's (2009) paper “Beware of the DAG”.

Pearl then proceeds toward criticism of potential outcomes' nota-
tion, giving his own “reading” (specification of the mathematical
model the DAG represents) which does not use this notation. Accord-
ing to Pearl the full graph would specify:

(P1) Y is determined by X only,
(P2) X is determined by Z only,
(P3) All functional relationships are further modified by omitted

factors (not shown explicitly in the graph) that are assumed
to be mutually independent yet arbitrarily distributed.

Pearl claims that no additional assumptions are required to derive
all the conclusions obtained using our assumptions 1–4b, and pro-
ceeds to claim that his rendition of the chain is superior to ours
(“more transparent, rigorous, explicit and conducive to meaningful
scientific discourse”), that potential outcomes' notation is “opaque”,
and even that more valid results are obtained when counterfactual
language is avoided.

At first glance Pearl's formulation appears simple and clear. How-
ever, this is illusory, as statements P1–P2 lack meaning, due to the
vagueness of the word “determined”. Usually when we talk about de-
termination using random variables, we are referring to prediction
(stochastic dependence and independence). Under this interpreta-
tion, P1 says that f(y|x, z)= f(y|x). Further, that is the mathematical
constraint imposed on the joint distribution of (Z, Y, X) when the
DGM corresponding to the DAG above is used, and it is the interpre-
tation that most knowledgeable users of SEM's would give. However,
it turns out that this is not the intended interpretation. Second, P3
says that the DAG Z→X→Y is actually an incomplete representation
of the actual DAG needed, requiring inclusion of error terms and the
specification of probabilistic dependencies among them. In short,
P1–P3 are not so clear and simple after all.

Next, Pearl states that assumptions 1–4b can be derived from the
DAG, citing one of his papers (Pearl, 2010, pp. 126–127) for “explicit
derivation”. There, instead of a derivation, we simply found a transla-
tion into potential outcomes' notation:

(1) Exclusion restrictions: For every variable Y having parents PAY

and for every set of endogenous variables S disjoint of PAY,
we have YpaY=YpaY, s.

(2) Independence restrictions: If Z1, …, Zk is any set of nodes not
connected to Y via dashed arcs, and PA1,…PAk their respective
set of parents, we have YpaY ∥# Z1pa1 ;…; Zkpak

! "
.

For the DAG under consideration here, the independence restric-
tions are essentially our 4a and 4b. The exclusion restrictions, which
translate P1 and P2 into potential outcomes' notation, are just our as-
sumption 2. Here, placing things into potential outcomes' notation has
a) clarified the use of the word “determined”, e.g., Y is determined
by X actually means Yzx=Yx (or Y(0, x)=Y(1, x) in our case), and
b) revealed another source of confusion in P1 (and P2), as Y in P1
does not even refer to the observed variable Y (even though this is the
natural interpretation), but rather to the potential variable Yzx (Y(z, x)
in our notation); in contrast, the relationship between observed and po-
tential outcomes is spelled out in our assumption 3. With the above in
mind, we invite the reader to compare assumptions 1–4b with P1–P3
and reassess “which notational system is more transparent…”.

More on potential outcomes

Potential outcomes' notation dates back to the work of Neyman
(1923, [1990]), and was rediscovered by Rubin (1974). The notation
is used to clearly define causal parameters of interest, and to do so in-
dependently of the methods used to estimate these, enabling assess-
ment of the assumptions that need to be satisfied in order that an
estimation method yields consistent (or unbiased) estimates of the
causal parameters of interest. Statisticians have successfully used
this notation to clarify the assumptions upon which various long-
standing statistical procedures rest; for a few examples, see the
work of Holland (1988) on direct and indirect effects (and more gen-
erally, mediation) in path analysis, a special kind of SEM, as well as
the subsequent work by Robins and Greenland (1992) on direct and
indirect effects, the work of Angrist et al. (1996) on instrumental vari-
ables, and the work of Robins (1986, 2003) on DGMs. Alternative ap-
proaches to mediation (see Frangakis and Rubin (2002) on principal
stratification), and a literature on longitudinal causal inference (see
Robins and Hernán (2009) for a nice overview) which use potential
outcomes' notation have also emerged in recent years, and we
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suspect that some of these new approaches would not have been
developed in the absence of this notation.

Personally, we find that using this notation helps us to formulate
problems clearly and avoid making mistakes, to understand and
develop identification conditions for estimating causal effects, and,
very importantly, to discuss whether or not such conditions are plau-
sible or implausible in practice (as above). Though quite intuitive, the
notation requires a little getting used to, primarily because it is not
typically included in early statistical training, but once that is accom-
plished, the notation is powerful and simple to use. Finally, as a strict-
ly pragmatic matter, the important papers in the literature on causal
inference (see especially papers by the 3R's (Robins, Rosenbaum,
Rubin, and selected collaborators)) use this notation, making an un-
derstanding of it a prerequisite for any neuroimaging researcher
who wants to learn more about this subject.

Glymour

Glymour makes a number of incorrect statements about potential
outcomes and the approach to causal inference that stems from the
statistical literature. As a full discussion would require a lengthy re-
sponse, we address a) only the three claims that Glymour incorrectly
attributes to us and b) his assertions that suggest the “potential out-
comes framework” is ill-suited for fMRI research.

We begin with the second of Glymour's attributions, namely that
we claim “the theory of graphical causal models developed by
Spirtes et al. (1993) makes no counterfactual claims”. What we actu-
ally said (p. 335) was that the model of Spirtes et al. (2000) “does not
refer to counterfactuals”. Our statement is correct and in no way im-
plies that the model cannot be used to discuss counterfactual claims.
Glymour's attribution stems from a failure to distinguish between the
definition of a model and the uses to which it may be put. In a more
familiar guise, a regression model can be used to make predictions,
but the model itself consists of a set of mathematical statements
that make no reference to prediction.

Glymour's third attribution appears to suggest we are claiming
that observational studies cannot be used to make valid causal infer-
ences. Not at all. The conditions needed to interpret associations as ef-
fects are the same in experimental and observational studies. The
hypothetical example of ours to which Glymour refers is a random-
ized experiment in which subjects are assigned to a stress task or a
control task. There is an intermediate outcome consisting of the
brain response in a stress related area and a final outcome (task per-
formance). Contrary to Glymour, the estimand of interest in our ex-
ample is the population effect of the brain response on task
performance E(Y(1,1)−Y(1,0)) under the stress condition, and we
simply constructed a substantively plausible example in which one
of the sufficient conditions for the SEM (DGM) parameters to be
used to make valid causal inferences was violated.

The first (and most general) claim that Glymour misattributes to
us is that “‘causal effects’ cannot be found by methods associated
with a variety of directed graph representations of causal relations”.
The point of our example, and, more generally, our comment, was
that when SEMs and related methods are used to make causal infer-
ences, additional assumptions above and beyond those required for
using these methods for other purposes (for example, description
and prediction) are needed. When these additional assumptions
hold, SEMs and related methods provide valid causal inferences. In
general, when these assumptions do not hold, causal inferences
obtained using SEMs and related methods will be invalid.

Connectivity and search

In the neuroimaging literature, interest in connectivity studies,
which describe how various brain regions interact and how these in-
teractions depend on experimental conditions, has increased in

recent years. If these studies are properly conducted and the resulting
data properly analyzed, they can substantially increase our under-
standing of how the brain functions and processes information. In
the example we presented in our original comment, there is an exper-
imental variable, a mediator and a final outcome, and the goal was to
estimate how the effect of a treatment on a behavioral response is
mediated by activation in a particular brain region. This is similar to
the setup in effective connectivity studies, where one aim is to esti-
mate how the effect of a treatment on activity in one brain region is
mediated by activity in a different region. For expository purposes
we tried to keep things as simple as possible, using a binary treatment
variable and intermediate and final responses that are measured
without error. Glymour suggests that what he calls the “PO frame-
work” is, among other things, inherently limited to similar types of
situations. That is not true. It is trivial to define potential outcomes
for continuous and multivariate treatments, and there is nothing to
preclude the response from being defined as a latent variable. The
case of resting state studies is also handled readily, and it is no prob-
lem to work with more than 3 variables, for example, multiple medi-
ators and/or multiple outcomes. That said, additional identifying
assumptions would be required in the case of multiple mediators.
As an example, Lindquist (2011) considers the case of a binary treat-
ment, a functional mediator and a subsequent outcome.

At the beginning of our original comment we said (p. 335) that we
were “unconvinced that directed graphical models (DGMs) are gen-
erally useful for finding ‘causal relations’ or estimating causal effects”.
We focused on the latter issue, in part because in studies of effective
connectivity, estimation of causal effects holds center stage. However,
Glymour seems to be more concerned with discovering causal rela-
tions. Our skepticism concerning the use of DGMs for this purpose
stems primarily from two considerations. First, like many others, we
do not believe that causal relations in fMRI or other areas can be reli-
ably discovered without making substantive assumptions about pos-
sible causal relationships (including the case where a variable does
not affect another) among variables; see for example Robins and
Wasserman (1999) for a similar point of view as well as an explicit
critique of search methods. Second, our original comment establishes
that conditional associations in DGMs do not evidence causation un-
less additional assumptions are met. This applies equally well in the
context of search using DGMs and we find it difficult to believe that
these additional assumptions will be met in all circumstances of in-
terest to neuroscientists.

Where's the science?

Our original note had two aims. First, we wanted neuroimaging
researchers to recognize that when they use SEMs to make causal in-
ferences, the validity of the conclusions rest on assumptions above
and beyond those required to use an SEM for descriptive or predictive
purposes. Unfortunately, these assumptions are rarely made explicit,
and in many instances, researchers are not even aware that they are
needed. Since these assumptions can have a major impact on the
“findings”, it is critical that researchers be aware of them, and even
though they may not be testable, that they think carefully about the
science behind their problem and utilize their substantive knowledge
to carefully consider, before using an SEM, whether or not these as-
sumptions are plausible in the particular problem under consider-
ation. For this reason, we were disappointed that Pearl, who in his
comment does not disagree with anything we stated about the im-
portance of assumptions, nevertheless ends his comment by urging
fMRI researchers “to continue using their familiar SEM language”
(and presumably SEMs). This recommendation, which completely
ignores the importance of assumptions for causal inference and
which is put forth with absolutely no consideration for fMRI subject
matter knowledge and considerations that might inform when
SEMs are reasonable or not to use, will prove harmful to the field if
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taken seriously. For if fMRI researchers continue to use their “famil-
iar” approach, drawing diagrams and fitting SEMs without realizing
the assumptions they are making, many of the causal inferences
thereby generated will be incorrect, and the development and use
of alternative ways of studying effective connectivity will be stifled.
That was our second aim: to encourage researchers to develop and
use such alternative procedures (for example, instrumental variables
and principal stratification) when SEMs and related methods are in-
appropriate. Additionally, we wanted to encourage researchers to de-
velop alternative experimental designs that might be used to identify
both direct effects of mediating variables and indirect effects of treat-
ments on outcomes. As an example, we pointed to the use of combin-
ing fMRI and transcranial magnetic stimulation, using the latter
technique to randomize subjects on the mediator, thereby enabling
inferences using standard procedures, including SEM's.

As an example illustrating several of the points in the preceding
paragraph, consider the following hypothetical randomized experi-
ment using a social evaluative threat task (Wager et al., 2009). A re-
searcher is interested in performing an effective connectivity
analysis where Z is a binary treatment assignment variable (task/no
task), and X and Y are, respectively, the observed BOLD responses in
ventromedial prefrontal cortex (VMPFC) and brainstem periaqueduc-
tal gray (PAG) regions. The researcher hypothesizes that treatment
causes activity in VMPFC, that activity in VMPFC causes activity in
PAG, and that there is no “direct effect” of the treatment on activity
in PAG (our assumptions 1 and 2). Assuming this is correct, popula-
tion level causal effects can be estimated using the SEM we have
been considering throughout if assumptions 4a and 4b are met.
Since subjects are randomized to the treatment or control group, 4a
holds. However, suppose there is some latent behavioral or genetic
trait, for example anxiety, such that subjects with the trait tend to
have a higher response in both VMPFC and PAG compared to those
without the trait. Assumption 4b is then violated and the SEM we
have been considering would not provide a valid estimate of the ef-
fect of activity in VMPFC on activity in PAG. Sobel (2008) shows
that the instrumental variable estimand can be used to correctly esti-
mate this effect in a two equation linear system under assumptions
less restrictive than 4b (that is, if 4b holds, these alternative assump-
tions hold). A researcher can then examine these alternative and
weaker assumptions and ask whether these might plausibly hold in
the application above.

It should be noted that this example is slightly different than most
standard effective connectivity examples where a single group of sub-
jects is observed under different experimental conditions. In addition,
we do not directly address the temporal aspect of the connectivity
problem and issues related to the variation in hemodynamic response
delays across regions of the brain (e.g., Lindquist and Wager, 2007;
Lindquist et al. 2009). However, the ideas presented herein can be ex-
tended to these settings as well, something we shall address in future
work. Further, although this comment focuses on SEMs, the issues
discussed in the example and more generally in our commentary
also apply to other commonly used techniques for assessing effective
connectivity (e.g., Granger causality, DCM, Bayes Net).

In short, causal inferences are only as valid as the assumptions
upon which they rest. Paying careful attention to assumptions and

using appropriate methods to make inferences about causation
moves science forward. Dogmatic adherence to a particular method-
ology moves it rearward.
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