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Probability is a useful tool for describing uncertainty, so it is
natural to strive for a system of statistical inference based on prob-
abilities for or against various hypotheses. But existing probabilistic
inference methods struggle to provide a meaningful interpretation of
the probabilities across experiments in sufficient generality. In this
paper we further develop a promising new approach based on what
are called inferential models (IMs). The fundamental idea behind IMs
is that there is an unobservable auxiliary variable that itself describes
the inherent uncertainty about the parameter of interest, and that
posterior probabilistic inference can be accomplished by predicting
this unobserved quantity. We describe a simple and intuitive three-
step construction of a random set of candidate parameter values,
each being consistent with the model, the observed data, and a aux-
iliary variable prediction. Then prior-free posterior summaries of the
available statistical evidence for and against a hypothesis of interest
are obtained by calculating the probability that this random set falls
completely in and completely out of the hypothesis, respectively. We
prove that these IM-based measures of evidence are calibrated in a
frequentist sense, showing that IMs give easily-interpretable results
both within and across experiments.

1. Introduction. Probability is a useful tool for describing uncertainty,
and it is natural to strive for a framework of statistical inference in which
the statistical evidence for and against an assertion about the unknown pa-
rameter can be summarized by a meaningful probability. The well-known
Bayesian framework achieves this goal, but the cost is that a prior distribu-
tion for the unknown parameter must first be introduced. Early efforts to get
probabilistic inference without prior specification include Fisher’s fiducial in-
ference (Zabell 1992) and its variants, Fraser’s structural inference (Fraser
1966, 1968) and the Dempster-Shafer theory (Dempster 2008; Shafer 1976).
These methods generate probabilities for inference, but they may not be easy
to interpret, i.e., these probabilities may not be properly calibrated across
users or experiments. So, more recently, efforts have focused on incorporating
a frequentist element into the Bayesian framework. In particular, objective
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Bayes analysis with default/reference priors (Berger 2006; Berger, Bernardo
and Sun 2009; Bernardo 1979) attempts to construct priors for which certain
posterior inferences, such as credible intervals, closely match that of a fre-
quentist. The calibrated Bayesian analysis of Rubin (1984), Dawid (1985),
and Little (2010) has similar motivations. But difficulties remain in choos-
ing good reference priors for high-dimensional problems so, despite these
efforts, a fully satisfactory framework of objective Bayes inference has yet
to emerge.

Recently, Martin, Zhang and Liu (2010) propose a promising new frame-
work for statistical inference, based on what are called inferential models
(IMs). This new approach is based on the very simple and intuitive idea
of first identifying the underlying source of uncertainty—a missing but pre-
dictable quantity—then making probabilistic inference by predicting the pre-
dictable quantity in a statistically accurate way. The result is a method that
assigns data-dependent probabilities to each relevant assertion about the
parameter of interest, without a prior distribution on the parameter space.
The goal of this paper is to further develop this new IM approach into a
general framework for prior-free probabilistic inference.

Mathematically, an IM determines a data-dependent mapping that as-
signs values in [0, 1] to subsets of the parameter space; cf. Definition 1. The
numerical values assigned to a subset A are meant to summarize the user’s
uncertainty about the assertion that the unknown parameter lies in A. In
this paper we present a simple, intuitive, and easy to implement three-step
process for constructing IMs. The following associate-predict-combine steps,
described in more detail in Section 3, shall serve this purpose.

A-sTEP. Associate the observed data x and the unknown parameter
f with an unobserved auxiliary variable u—the predictable quantity—to
obtain a set O, (u) of candidate parameter values.

P-sTEP. Predict u with a credible predictive random set S.

C-sTeEP. Combine ©4(u) and the predictive random set S to obtain the
random set ©,(S) = U,es (). Then, for any A C © of interest, compute
the probability that the random set ©,(S) is a subset of A as a measure of
the available statistical evidence in favor of A.

The A-step is meant to emphasize the use of predictable quantities in the
statistical modeling step. The motivation is clear: to obtain statistical infer-
ence based on usual predictive probabilities, there must be something being
predicted. The P-step is new and unique to the inferential model framework.
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Roughly speaking, the credibility condition in the P-step ensures that the
numerical values of the probabilities produced in the C-step are consistent
with the usual frequency interpretation. This frequency calibration, together
with the dependence on the observed data x, makes the output of the C-step
meaningful both within and across experiments.

The remainder of this paper is organized as follows. Statistical modeling
for probabilistic inference is discussed in Section 2. We argue that a proba-
bilistic inference framework cannot be built from the sampling model alone,
and suggest that the sampling model be characterized by an unobserved
but predictable auxiliary variable. We refer to the resulting model as an
association model. Details of the three-step IM construction are described
in Section 3. The three steps are illustrated with a simple Poisson running
example. The meaningfulness of the IMs is investigated in Section 4. There
a validity theorem is proved which formally establishes the frequency cal-
ibration of the IM outputs under mild conditions. This result also allows
the user additional flexibility in the P-step; see Theorem 2, an extension of
Theorem 1 in Martin, Zhang and Liu (2010). Use of IMs for inference is de-
scribed in Section 5, and two non-trivial examples are given in Section 6. In
the first example, a “default” choice of predictive random set S determines
an IM with output similar to the classical frequentist procedure. In the sec-
ond example, the predictive random set is chosen carefully based on the
hypothesis in question, and simulations show that this “problem-specific”
IM-based procedure demonstrably outperforms a standard frequentist pro-
cedure. Some concluding remarks are made in Section 7.

2. Sampling models and probabilistic inference.

2.1. Notation and setup. If X denotes the observable sample data, then
the sampling model is a probability distribution Py on the sample space X,
indexed by a parameter § € O. Here X may consist of a collection of n
(possibly vector-valued) data points, in which case both Py and X would
depend on n. Then the goal of statistical inference is to reach conclusions
about 6 based on observing X = x. In our context, the parameter 6 is
unknown but fixed. This is essentially without loss of generality because
even when # is a random quantity, the goal is usually to make inference
about its realized value in the experiment at hand.

2.2. The role of sampling models. For simplicity, suppose that, for each
0, Py is dominated by a fixed o-finite measure A, such as Lebesgue or count-
ing measure, so that Py has a density py = dPy/d\. In such cases, it is
common to summarize the information in the observed data x about 6 with
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the likelihood function L,(0) = pg(z), now treated as a function of 6 for
fixed x. Fisher (1922, 1925, 1934) recognized the importance of L,(#) and
emphasized that it is not a probability distribution for 6. Rather, its inter-
pretation is postdictive in the sense that it can be used only to compare
different explanations of the observed event “X = z.” The key observation
is that while L, (0) is a probability density in x, allowing € to vary changes
the underlying probability space, so, mathematically, the usual laws of prob-
ability do not hold and, logically, these probabilities are not predictive in
nature. Hence, no system of probabilistic inference—where the output must
have a predictive probabilistic interpretation—can be developed based on
the likelihood alone. This important point is further emphasized below.

PRINCIPLE. The sampling model alone is insufficient for probabilistic in-
ference about unknown parameters. Only if unobserved but predictable quan-
tities are associated with the observed data and unknown parameters can
predictive probabilistic inference be achieved.

This principle formally states the well-known fact that the usual frequen-
tist procedures, such as hypothesis tests and confidence intervals, which are
built from the sampling model alone, are not probabilistic in nature. But
it goes even further, stating what needs to be done to introduce a proba-
bilistic interpretation. Even the basic idea of the familiar Bayesian inference
is consistent with the foregoing principle. Indeed, in the fully Bayesian ap-
proach, @ plays the role of the predictable quantity—there is no unknown
parameter—so the principle has nothing to say. While probabilities are avail-
able for inference on 6 in the Bayesian setting, these probabilities may not
be easy to interpret. In a subjective Bayes setting, for example, where an
empirically valid distribution is available for everything, the posterior prob-
abilities are calibrated across samples. But when the postulated prior for
0 is not empirically valid, as is the often the case with default priors, the
resulting posterior probabilities are not calibrated in general (Ermini Leaf,
Hui and Liu 2009), which makes interpretation challenging.

For valid probabilistic inference, we propose to build a full statistical
model for observed data and unknown quantities of interest. We call this an
association model to distinguish it from usual sampling models. Thus, an as-
sociation model associates three quantities: the observable X, the unknown
f, and a predictable auxiliary variable U. Then probabilistic inference can
be achieved by predicting the unobserved auxiliary variable.

2.3. Association models. In this paper the sampling model for the ob-
servable X is that induced by an auxiliary (a-)variable U, for given 6. Let
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U be a more-or-less arbitrary auxiliary space, on which is defined a prob-
ability measure p. In applications, U can often be a unit hyper-cube and
1 Lebesgue measure. The sampling model Py shall be determined by the
following algorithm:

(2.1) sample U ~ p and set X = a(U, ),

for an appropriate mapping a : U x © — X. The key is the association of
the observable X, the unknown 6, and the a-variable U through the relation
X = a(U,0). This particular formulation of the sampling model is not a
restriction. In fact, the two-step construction of the observable X in (2.1) is
generally consistent with scientific understanding of the underlying process
under investigation; the signal plus noise model is a good example. Model
(2.1) is also quite familiar to statisticians in the context of random variable
generation or, more generally, in the context of model building. But see
Section 2.4 below for discussion of the non-uniqueness issue.

PoissoN EXaMPLE. As a simple running example, consider the prob-
lem of inference on the mean 6 of a Poisson population based on a single
observation X. The association model for X, given 8, may be written as

(2.2) Fy(X —1) <U < Fyp(X), U ~ Unif(0,1),
where Fy denotes the Pois(#) distribution function.

2.4. The non-uniqueness issue. It should not be surprising that there
are many association models for a given sampling model. In fact, for a given
sampling model Py, there are as many association models as there are triplets
(U, p, ap), with ag(-) = a(-, ), such that Py equals the push-forward measure
Hay ! The non-uniqueness arises from the fact that it is generally only possi-
ble to elicit—from experts, past experience, or exploratory data analysis—a
model for the observable X; models for latent variables are more difficult, if
not impossible, to pin down. But given the limitations of the sampling model
(cf. Section 2.2), this non-uniqueness is apparently the price the statistician
must pay for probabilistic inference. This is especially true for complex prob-
lems such as multiple testing and variable selection in regression.

An interesting observation is that the choice of association model can be
investigated through transformations of the a-variables. To see this, consider
two association models (Uy, p1,ap,1) and (Uz, p12, ag2) for a given sampling
model. Suppose further that the relationship ag1(u1) = ap2(u2) defines, for
each 6, a one-to-one mapping from U; to Us. Since a1 9(U1) and ag2(Us)
have the same distribution, the measure us is uniquely defined by w1 and
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the maps ap1 and ap2. In other words, the choice of association model
is equivalent to the choice of a-variable parametrization, suggesting that
any two association models are related via some one-to-one transformations
of a-variables, namely Us; = ¢y(Uy), possibly depending on the unknown
f. This implies that the non-uniqueness of association models allows for
simple alternative ways of doing a-variable transformation for constructing
simple and efficient predictive random sets. For example, some association
models allow for simple a-variable dimension reduction (Section 7). We will
encounter these a-variable transformations again in Sections 4 and 6.

3. Inferential models: a three-step construction. A simple and
general three-step representation of an IM is given in Section 1. This section
describes each of these three steps in greater detail, with illustrations in the
simple Poisson example.

3.1. Association step. The association model (2.1) plays two distinct
roles. Before the experiment, the association model characterizes the pre-
dictive probabilities of the observable X. But once X = x is observed, the
role of the association model changes. The key idea is that the observed x
and the unknown 6 must satisfy

(3.1) x = a(u*,0)

for some fixed u* € U. The quantity «* in (3.1) is unobserved, but there
is information available about the nature of this quantity; in particular, we
know that u* is the realization of a sample U ~ p.

Of course, the value of ©u* can never be known, but if it were, the inference
problem would be simple—just solve the equation = = a(u*, ) for . More
generally, one could construct the set of solutions 6, (u*), where

(3.2) Oy(u)={0:2=a(u,d)}, uel.

For continuous-data problems, 0, (u) is typically a singleton for each u; for
other problems, it could be a set. In either case, ©,(u*) represents the best
possible inference: the true 6 is guaranteed to be in O, (u*).

Po1ssoN EXAMPLE (cont). Integration-by-parts reveals that the Pois(6)
distribution function satisfies Fy(x) = 1—Gy41(0), where G, is a Gamma(a, 1)
distribution function. Therefore, from (2.2), we get

(3.3) Gop1(0) <@ < Gu(0), a=1—u.
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Inverting (3.3) produces the set
(34) O (u) = (G (1), Gz (@)

If u* was available, then ©,(u*) would provide the best possible inference
in the sense that the true value of 6 is guaranteed to sit in this interval.
But there is no additional information available to help pin down further
the exact location of 6 in O, (u*).

3.2. Prediction step. The above discussion highlights the importance of
the a-variable for inference. Therefore, it is only natural that the inference
problem should focus on accurately predicting the unobserved u*. To predict
u* with desired certainty, we employ a random set, called a predictive random
set, or PRS for short. Let v — S, be a mapping from U to a collection of
connected subsets of U, with the constraint that S, 3 u for each u. One
example of such a mapping § is given below, and more details about the
choice of PRS are given in Section 4. Intuitively, the PRS Sy, for U ~ p,
encodes our certainty about predicting the unobserved u*.

PoissoN EXAMPLE (cont). In this example we predict the unobserved
u* =1—wu* in (3.3) with a PRS defined by the set-valued mapping

(3.5) Su={u:|a—05/<|u—05]}, wuwelo1].

This PRS is can be shown to be credible, as required in the P-step description
in Section 1; see Section 4 for the formal definition of credibility and the
relevant theorem.

3.3. Combination step. To transfer the available information about u*
to the #-space, our last step is to combine the information in the association
model, the observed x, and the uncertainty about predicting «* encoded in
the PRS §. Combining §,, with the association model amounts to expanding
the set of solutions ©,(u) in (3.2) for a given u to account for all candidates
for v* in the set S,. That is, we now consider

(3'6) @:Jc(Su) = U @x(ﬂ)a uel,
UESy

which is larger than O, (u) since S, > u. Again, this expansion of the set
O, (u) of candidate 0 values reflects our uncertainty about the guess u for
u*. Intuitively, the set ©,(S,,) contains those values of § which are consistent
with the observed data and sampling model for at least one candidate 4 € S,,.
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Now consider an assertion A about the parameter of interest #. Mathe-
matically, A is just a subset of O, but it acts much like a hypothesis in the
context of classical statistics. To summarize the statistical evidence in x for
the assertion A, we calculate the probabilities that the random set 0, (Sy),
as a function of U ~ p, is a subset of A. That is

(3.7) e, s(A) = pfu: 0,(S,)  A}.

We refer to e, 5(A) as the lower evidence function at A. To make decisions
about A, it is necessary to know e, s(A°) as well. However, in what follows,
it will be more convenient to work with

(3-8) €rs(A) =1 -, 5(A%) = p{u: ©(Su) £ A%},

the upper evidence function at A. Therefore, we summarize the statistical
evidence about A with the pair e, ¢(A) and &, s(A). Intuitively, large values
of e, s(A) suggests that the data z gives strong support to the assertion,
while large values €, s(A) suggests that A is highly plausible given z.

While the lower and upper evidence functions e, s and &, s produce bona
fide predictive probabilities, there are two important points to keep in mind
regarding their interpretation.

e e, s(A) and &, 5(A) are probabilities for the random set ©,(Sy) con-
ditional on observed X = z, similar to Bayesian posterior or fiducial
probabilities. But note, for example, that e, s(A) does not represent
probability that A is true. In fact, no attempt is made to introduce a
measure on the parameter space ©, so no such probability exists.

e e, s and & s do not satisfy the usual rules of probability. For exam-
ple, e, s(A) + e, 5(A°) < 1, with equality if and only if ©,(S,) is a
singleton for p-almost all u. But from this subadditivity property and
the definition of €, s in (3.8), we have that

er,s5(4) <& s5(4),

which explains the names lower and upper evidence functions. With
this in mind, one could view the interval [e, 5(A4),e; s(A)] as a sort
of range of Bayesian posterior probabilities of A over a class of priors
(Wasserman 1990), but we will not take this view.

It should also be mentioned that an adjustment to the evidence functions
is required if p{u : ©,4(S,) = @} > 0. This will not occur in the examples
considered in this paper, but it can happen in general. In such cases, the
lower evidence function, for example, must be rewritten as

Q:p,S(A) = p{u: 0,(Sy) C A,0.(Su) # T}/ p{u : ©.(Su) # T},
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F1G 1. Plot of the upper evidence function €;,s(A:) in (3.10), with Ay = {t}, as a function
of t in the Poisson example. We assume that X =5 is observed.

the conditional p-probability that ©,(Sy) C A, given O,(S,) is non-empty.

PoissoN EXAMPLE (cont). For the PRS mapping S, in (3.5), the set
©,(Sy) of candidate 6 values, for the given u, is

(39)  0u(S8u) = (G205 [u—05]), G105+ [u—0.5])].

For a singleton assertion A; = {t}, it is easy to see that the lower evidence
function is zero. But the upper evidence function is

(3.10) €, 5(At) =1 —max{l — 2G4(t),0} — max{2G,41(t) — 1,0}.

A plot of & s(A¢) as a function of ¢t is shown in Figure 1. The plateau
indicates that no 6 values in a small neighborhood of the observed x = 5 can
be ruled out. Furthermore, the graph shows that 6’s in an interval around
x = b, say [3,9], are relatively plausible. More details on the use of the
evidence functions for inference are given in Section 5.

In the simple Poisson illustration above, evaluation of the evidence func-
tions is straightforward. The calculations are essentially the same for any
single-parameter problem for singleton assertions. More generally, if the a-
variable is high-dimensional, like in Section 6.2, then Monte Carlo methods
can be used. But once the evidence functions are available, inference can
proceed along the lines presented in Section 5.
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3.4. Summary. The three-step construction of IMs described in Sec-
tions 3.1-3.3 is simple and easy to implement. But it is beneficial here
to briefly summarize the result of this construction. The A-step specifies
the particular association model representation of the sampling model, thus
determining the a-variable to be predicted. To predict the unobserved a-
variable, we incorporate a PRS S in the P-step. The intuition here is that
predicting this unobserved u* with a draw U ~ p (or the corresponding sin-
gleton set {U}) is insufficient in the sense that, in many problems, ©,({U})
will contain the true 6 with p-probability 0. By expanding the draw U to
a set Sy containing U, give ourselves some opportunity to catch the real 6.
The other extreme S,, = U is also not useful; the balance between the size of
S and properties of the resulting IM are described in Section 4. The C-step
proceeds by combining the information about the relation between (X, 6,U)
in the association model, the observed data X = x, and the information
about the a-variable in Sy to find a random set ©,(Sy) of candidate pa-
rameter values. For a given assertion A about 8, we summarize the statistical
evidence in = for A with e, s(A), which is the u-probability that ©,(Sy) is a
subset of A. We couple this with &, s(A) = 1 —e, s5(A°), the upper evidence
function, and produce the pair (e, s(A),€;,s(A4)) as a complete summary of
our uncertainty about A.

Armed with the necessary concepts and notation, we can now give a
formal definition of an inferential model.

DEFINITION 1. For a given sampling model Py on X, (U, y1, a), S) defines
an inferential model (IM) if the triplet (U, u, a) defines an association model
as in Section 2.3 and if S is a PRS as in Section 3.2. Then, given the observed
X = x, the three-step process in Sections 3.1-3.3 describes how to construct
evidence functions (e, €), s from the IM for probabilistic inference.

4. Theoretical validity of IMs. In the previous section we described
a simple three-step procedure for constructing an IM, and it is clear that,
together, the evidence functions e, s(A) and &, s(A) provide a meaningful
summary of evidence favoring A for the given observed data X = z. In this
section we show that ey g(A) and €x s(A) are also meaningful as functions
of the random variable X ~ Py for a fixed assertion A. For example, we
show that ex s(A) is frequency-calibrated in the following sense: if § ¢ A,
then Pg{ex s(A) > 1 — a} < « for each a € [0,1]. In other words, the
amount of evidence in favor of a false A can be large with only small proba-
bility. Mathematically, this property means that the lower evidence function
has a predictive probabilistic interpretation, suggesting that the probability
in (3.7) is, indeed, appropriately scaled for objective scientific inference. A
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similar property holds for €x s(A). We refer to this frequency-calibration
property wvalidity of the IM; cf. Definition 3. See Bernardo (1979), Rubin
(1984) and Dawid (1985) for similar considerations leading to investigations
of frequency-calibration and of objective priors for Bayesian inference.

Towards establishing this general validity property for IMs, we review
some of the concepts from Zhang and Liu (2010) and Martin, Zhang and
Liu (2010). First we need a few definitions. Start with the mapping

(4.1) Qs(u)=p{a:8; Fu}, wel,

which gives the probability that the PRS Sy misses the specified target w.
Ideally, the map S will be such that the random variable Qs(U), a function
of U ~ pu, will be probabilistically small.

DEFINITION 2 (Credibility). A PRS Sy is credible at level a € (0, 1) for
predicting the unobserved auxiliary variable if

(4.2) w{u: Qs(u) >1—a} <a.

In words, credibility implies that the probability that Sy misses a target
u is large for only a small u-proportion of possible v values. The PRS S, in
(3.5) is credible. Indeed, it is easy to check that, in this case,

Qs(u) = max{l — 2u,0} + max{2u — 1,0} = [2u — 1|.
Therefore, if U ~ Unif(0,1) then Qs(U) ~ Unif(0,1) too, and credibility
follows immediately. More generally, we have the following recipe for con-

structing credible PRSs.

THEOREM 1. Suppose the measure u on U is non-atomic, and let f be
a continuous real-valued function on U. Then the PRS S given by

Su={ua:f(@) < flw)}, wel,
1s credible in the sense of Definition 2.
PROOF. Let F' denote the distribution function of f(U) for U ~ p. Then
Qs(u) = p{a: Sz Fu} = pla: f(a) < f(u)} = F(f(u)).
If U ~ p, then Qs(U) = F(f(U)) ~ Unif(0,1) and credibility follows. [
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It turns out that credibility of the underlying PRS is essentially all that
is needed to prove the meaningfulness of the corresponding IM. Here mean-
ingfulness refers to a calibration property of the corresponding evidence
function, which is the property we call validity.

DEFINITION 3 (Validity). Suppose X ~ Py and let A be an assertion of
interest. Then the IM ((U, i, a),S) is valid for A if, for each a € (0, 1), the
corresponding lower evidence function satisfies

(4.3) supPplexs(4) >1—a} <a
bz A

The IM is called valid if it is valid for all A.

From the relationship between e, s and &, s in (3.8), it is easy to check
that the validity property can be equivalently stated in terms of the upper
evidence function. That is, the IM is valid if, for any assertion A,

(4.4) sup Pp{ex,s(A) < a} <a.
fcA
This representation is occasionally more convenient than (4.3).

THEOREM 2. Consider a one-to-one transformation v = pg(u) such that
the push-forward measure p, = ,ucpe_l on V = ¢p(U) does not depend on
0. Suppose S is credible for predicting v* = pg(u*), and O,(Sy) # & with
w-probability 1 for all x. Then for any assertion A C ©,

(4.5) sup Pg{ex s ,(A) > 1—a} <a,
0¢A

where e, s ,(A) = pp{v € V1 ©,(Sy) C A}. In other words, the IM, in
terms of transformed a-variables, is valid.

PROOF. Take any 6 ¢ A. Since A C {6}¢, it follows from monotonicity of
the lower evidence function that

Qx,S,cp(A) < gaz,S,g@({e}C)
= pp{v 1 0(Sy) Z 0} = pp{v : Sy F 0™}

Credibility of S implies that the right-hand side, as a function of V* ~ p,
is stochastically smaller than Unif(0,1). This, in turn, implies the same of
ex,s,(A) as a function of X ~ Py. Therefore,

Po{exs,(A) > 1 —a} <P{Unif(0,1) > 1-a},

and the result follows. O
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Theorem 2 above, which establishes the validity of the IM framework,
extends Theorem 3.1 of Zhang and Liu (2010) in an important direction. In
particular, it allows for a change of a-variable which, in addition to being
helpful in certain cases, shows that the validity of IMs is independent of
the parametrization of the association model. This change of a-variable is
also allowed to depend on the unknown parameter, a particularly useful
technique in some examples, including those presented in Section 6.

The condition that the set ©,(Sy) be non-empty with ji,-probability 1 for
all x is critical and cannot be relaxed. This is easy to arrange for problems
where a given x imposes no constraint on the possible #-values. But there
are constrained parameter problems where this condition does not hold; see
Ermini Leaf and Liu (2010) for an IM analysis in this more general case.

We conclude this section with a remark related to constructions of PRSs.
Validity is a desirable property, but cannot be one’s only consideration.
This is analogous to the frequentist hypothesis testing problem, with validity
playing the role of the significance level. Take, for example, the extreme case
where S, = U, which implies complete uncertainty about the prediction of
u*. In this case, validity is obvious, just like a test that never rejects is
guaranteed to control the significance level at any level a. But we know that
such a naive testing rule will perform poorly in terms of power, and the IM
with too large of PRS will suffer similarly. For this, a secondary condition
called efficiency, analogous to power in hypothesis testing, is required. More
discussion on efficiency is given in Section 7.

5. Using IMs for inference. Given our interpretation, a natural sub-
jectivist approach would be to examine the relative magnitudes of the evi-
dence functions for several competing assertions. There are similarities here
to Jeffreys’ Bayes factors and Fisher’s p-values, but we believe that the in-
terpretation of evidence functions is easier. For example, e, s(A) directly
measures the evidence in favor of A, given data X = x, while Fisher’s p-
value measures evidence in favor of A indirectly through the chance of the
event X =z, given 0§ € A.

Poi1ssoN EXAMPLE (cont). Suppose X = 5 is observed, and the asser-
tion of interest is A = (0, 2], i.e., the Poisson mean 6 is no more than 2.
With the PRS S, in (3.5) and the corresponding ©,(S,) in (3.9), it is easy
to check that the lower and upper evidence functions are

&5 s(A) = max{2Gs(2) — 1,0} =0
&5.5(A) = 1 — max{1 — 2G5(2),0} = 2G5(2) = 0.105.
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14 R. MARTIN AND C. LIU

The evidence in favor of A is not overwhelming in this example, so it would
not be unreasonable to reject the assertion that 6 is no more than 2. For
comparison, note that Fisher’s p-value for testing Hy : 6 € Abasedon X =5
is 0.0523, exactly half of €, s(A) in this case, which has the force of a logical
disjunction: either A is false or it is true and a rare event occured. So while
both procedures make the same decision, the reasoning is different.

In addition to providing problem-specific measures of certainty about var-
ious assertions of interest, the evidence functions can easily be used to design
classical inference tools that satisfy the usual frequentist properties. First
consider the null hypothesis Hp : § € A. Then an IM-based counterpart to
a frequentist testing rule is of the following form:

(5.1) Reject Hy if €, s(A) < t, for a specified t € (0,1).

According to (4.4) and Theorem 2, if the PRS S is credible, then the prob-
ability of a Type I error for such a rejection rule is

sup Pp{e; s(A) <t} <t.
fcA

So in order for the test (5.1) to control the probability of a Type I error at

a specified a € (0, 1), one should reject Hy if the upper evidence is < a.
Next consider the class of singleton assertions A; = {t}, t € O. As a

counterpart to a frequentist confidence region, define the plausibility region

(5.2) () = {t: e, s(A:) > a}.
Now the coverage probability of the plausibility region (5.2) is

PQ{HI(O[) > 9} = Pg{é}gs(Ag) > Oz}
=1-Py{exs(dy) <a} >1-a,

where the last inequality follows from Theorem 2. Therefore, this plausibility
region has at least the nominal coverage probability.

PoissoN EXAMPLE (cont). For the PRS determined by S in (3.5) and
the sequence of assertions A; above, the upper evidence function €, s(A;) is
displayed in (3.10). Then, for observed X = 5, a nominal 90% plausibility
interval for @ is given by

&.5(Ay) > 0.10 <= ¢ e II5(0.10) = (1.97,10.51).
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It is worth pointing out that, if the sample size is increased, then the
resulting inference will, as expected, become more definitive. For example,
the plausibility interval for the Poisson mean above would be narrower if
a sample of size n produced a mean X = 5. But the required conditioning
argument needed to prove this claim is beyond the scope of this paper; see
Section 7 for a preview and references.

6. Two non-trivial examples. To illustrate the IM approach, we con-
sider two non-trivial examples. In each example below, there is a sort of
marginalization required, and this is accomplished by using a cylinder PRS
that effectively ignores parts of the a-variable to be predicted. More sophisti-
cated IM-based marginalization techniques are available, but these examples
are meant to be as simple as possible.

6.1. Inference on a standardized mean. Suppose that Xi,..., X, are in-
dependent observations from a N(&,02) population. The goal is to make
inference on ¢ = ¢/o, the standardized mean. Begin with a reduction of
the observed data z = (x1,...,z,) to the sufficient statistics for 8 = (¢, 0?),
namely (7, s?). Some formal IM-based justification for this reduction is avail-
able but we will not discuss this here; see Section 7.

For the A-step, here we take the association model to be

(6.1) T=¢+n"Y%0u; and s = ous,
where the space of a-variables u = (uj,ug) is equipped with the measure

j=N(0,1) x ,/ChiSq,_,/(n — 1).

A bit of algebra reveals that

n?z a2 4y
= and s = ous.
S u9

For 0 = (¢, 0), make a change of a-variable v = py(u), given by

n}/2¢)+—u1
U2

exp{ua}

- F _SXPtzy
n = U expln]

) and vy =
where Fy(-) is the distribution function for a non-central t,_; distribu-
tion with non-centrality parameter n'/2i. Note that the full generality of a
change-of-variables that depends on the unknown parameter in Theorem 2
is needed here. Then the transformed association model is

nt/%z

:Fw_l(vl) and 82010g1v2

S — vy’
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16 R. MARTIN AND C. LIU

and the measure ji, on the space of v = (v1,v2) has a Unif(0, 1) marginal on
the v1-space; the distribution on vi-slices of the vy space can be worked out,
but it is not needed in what follows. For the P-step, we predict v* = pgp(u*)
with a rectangle PRS S given by

(6.2) Sy ={01:]01 — 0.5/ < |v; —0.5]} x [0,1], v = (v1,v2).

That this PRS is credible follows Theorem 1. Using a PRS that spans the
entire vg-space for each v has the effect of “integrating out” the nuisance
parameter . For the PRS S in (6.2), if z = n'/?Z /s, then the C-step gives
the following set of candidate (v, o) pairs:

Oz(Sy) = U (Sy) X Eg(Sy)

(6:3) = {4 |Fy(2) — 05| > |oy — 0.5]} x {o: 0 > O}

For assertions A; = {¢p =t,0 > 0}, the lower evidence function is zero, but
the upper evidence function is given by

€s,5(Ar) = pp{v: 0,(S,) N Ay # 2}
= Ncp{v U, (Sy) N{t} # Q}
= pp{v : U (Sy) >t}
=1—11-2F(2).

In this case, the 100(1 — o)% plausibility interval II,(«) for ¢ is obtained
by inverting the inequality 1 — [2F}(2) — 1| > «, i.e.,

(o) ={t:a/2 < F(z) <1—a/2}.

The reader should note that this is exactly the same as the standard
frequentist confidence interval based on the sampling distribution of the
standardized sample mean. The frequentist approach, however, relies on an
informal marginalization. On the other hand, the IM approach above for-
mally shows exactly how o is ignored and, in fact, there are available more
sophisticated IM analyses that handle unknown ¢ more gracefully; these
details are beyond our present scope, but see Section 7.

6.2. Inference on a Poisson process. In this section we take a second
look at an example presented in Martin, Zhang and Liu (2010) in which
we investigate whether an observed Poisson process is homogeneous. This
example shares a number of similarities with the now very common high-
dimensional multiple testing problems; see, for example, Efron (2010) and
the references therein. Our focus here is to simplify the presentation in
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Martin, Zhang and Liu (2010) and to emphasize the three-step construction
of an IM for probabilistic inference.

A process is to be monitored over a pre-specified interval of time, say
[0,7]. Suppose, during that period of time, we observe n events at times
0<Ty <---<T, <7; the (n + 1)st event, which takes place at time
Th+1 > 7, is unobserved. We model the time between events X; = T; —T;_1,
i =1,...,n, with Tp = 0, as independent exponential random variables,
X; ~ Exp(6;), with unknown rates 61,...,60,. The goal is to produce a
plausibility measure of the assertion

(6.4) A = {process is homogeneous} = {61 = --- = 0,,}.
Start, in the A-step, with the following simple association model:
zi:ui/&-, izl,...,n.

In this case, U = (0, 00)™ and p is the n-fold Exp(1) product measure. Make
a change of a-variables v = ¢(u) as follows:

n
Vg = Zul and v; =wu;/vg, 1=1,...,n.
i=1
The new vector v = (vg, v1,...,vy) lives in V = (0,00) x S,,—1, where S,_;

is the (n — 1)-dimensional probability simplex in R™, and the corresponding
measure /i, is the product Gamma(n, 1) x Dir,(p,) with p, = n~'1,. Then
the modified association model is

(6.5) xi:vovi/ei, i:1,...,n.
For the P-step, we shall consider the following PRS:
(6.6) Sy =A{0: f(0) < f(v)},

where

n—1
f() == {ailogsi(v) + b; log[l — 5;(v)]},
=1

with s;(v) = 23:1 v, a; = 1/(n—1—0.3), and b; = 1/(i—0.3). The would-be
last term in f(v), with ¢ = n, is omitted since s, (v) is identically 1 for all
v. A few remarks are in order regarding this choice of PRS.

e The random vector (s1(V),...,sp—1(V)), for V ~ p,, has the distri-
bution of a vector of sorted Unif(0, 1) random variables. The problem
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18 R. MARTIN AND C. LIU

of predicting sorted uniforms is important in a number of IM applica-
tions. The PRS in (6.6) with f(v) as above is shown by Zhang (2010,
Sec. 3.4.2) to provide an easy-to-compute alternative to the hierarchi-
cal PRS used in Martin, Zhang and Liu (2010).

e The fact that f is continuous implies, via Theorem 1, that this choice
of PRS is credible in the sense of Definition 2.

e The first component vy of the v-vector is essentially ignored in the
construction of the PRS. This is partly for convenience, and partly
because vy is related to the overall scale of the problem which is irrel-
evant to the homogeneity assertion.

For the C-step, combining the observed data, the association model (6.5),
and the PRS (6.6), we get the following random set for 6:

O(Sv) ={0: f(v(z,0)) < f(V)},

where v(z,0) = (0121,...,002,)/ 371 025, and V. = (Vo,V1,..., V) ~
. The lower evidence function is zero for the homogeneity assertion. It is
important to note that if § is a constant vector, then v(z,6) is independent
of the constant, i.e., v(x,0) = v(x,1,,), which greatly simplifies computation
of the upper evidence function at A. Indeed,

€r5,0(A) = pefv: fv(z,1)) < f(v)},

which can easily be evaluated using Monte Carlo. As described in Section 5,
the level oo IM-based tests rejects if €, 5.,(A) < a.

To illustrate the performance of this IM-based approach to testing for
homogeneity, we will reproduce the simulation study presented in Martin,
Zhang and Liu (2010). Here we compare our results with the basic likelihood
ratio test, which is based on the test statistic

Ma) = {(IThy =) " /2",

a power of the ratio of geometric to arithmetic means. The sampling dis-
tribution of A(X) is invariant to scale transformations, so its distribution
under the homogeneity assumption is independent of the common 6 value.
We compare the power of the IM and likelihood ratio tests in several dif-
ferent cases. In each setup, exactly ny + no = 100 events are observed, but
the first n1 exponential rates equal 1 while the last ny equal 6. That is, the
data is sampled from a Poisson process with a single change point. Figure 2
summarizes the power of the two tests in this problem over a range of 6
values for two configurations of (ni,n2). Here we see that, in both cases,
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Fi1G 2. Powers of the IM and likelihood ratio tests for the simulation described in Sec-
tion 6.2. The left shows (n1,n2) = (50,50) and the right shows (n1,n2) = (10,90). In both
cases, 0 is the ratio of the rate of the last na observations to that of the first ni.

the IM-based test has much larger power than the likelihood ratio test. We
should mention that the choice of PRS used for the IM procedure is closely
related to the particular choice of assertion/hypothesis, while the likelihood
ratio test is more of a black-box procedure, so the better performance of the
former is not so surprising. However, there does not appear to be a straight-
forward classical test which is particularly good against the alternative of
at least one change-point.

7. Discussion. In this paper we have described a simple three-step
procedure to construct IMs for prior-free probabilistic inference. The basis
for this new approach is that probabilistic inference requires a relationship
between data, parameters, and a predictable quantity. The proposed associ-
ation model does just that, and fits in nicely in the three-step construction.
Other methods are available for constructing probabilistic inference but, as
described above, it is challenging to guarantee that the numerical values of
such probabilities are meaningful across users or experiments. We proved
in Section 4 that an IM yields frequency-calibrated probabilities under very
general conditions. The big point is that the values of the corresponding
plausibility function are meaningful both within and across experiments,
accomplishing both the frequentist and Bayesian goals simultaneously.

Admittedly, the final IM depends on the user’s choice of association model
and PRS, but we do not believe that this is particularly damning. Efforts
to define and construct optimal association models and PRSs are ongoing,
but a case can be made to prefer the “arbitrariness” of the choice of PRS
over that of a frequentist’s choice of statistic or Bayesian’s choice of prior.
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The point is that neither a frequentist sampling distribution nor a Bayesian
prior distribution adequately describes the source of uncertainty about 6.
As we argued above, this uncertainty is fully characterized by the fact that,
whatever the association model, the value of u* is missing. Therefore, it
seems only natural to prefer the IM framework that features a direct attack
on the source of uncertainty over another that attacks the problem indirectly.

To elaborate a bit more on the non-uniqueness issue, we note that dif-
ferences between IM outputs from different PRSs are slight for assertions in-
volving one-dimensional quantities. However, for high-dimensional a-variables,
the non-uniqueness issue deserves special attention. The basic idea of IMs
is to construct PRSs by accurately predicting functions of a-variables that
are most relevant to specific assertions of interest. This often corresponds to
dimension reduction for a-variables or their functions to be predicted. It is
interesting that this approach to a-variable dimension reduction has some
close connections to Fisher’s theory of sufficient statistics; see Martin, Hwang
and Liu (2011a) for details. For nuisance parameter problems, like those in
Section 6, there is a different form of dimension reduction required, namely
marginalization. Martin, Hwang and Liu (2011b) discuss this technique and
apply their methods to the famous Behrens-Fisher problem.

Of course, compared to Bayesian and frequentist methods, which are
well-developed in the last century, IMs have many open problems. Both
theoretical work, including conditioning and marginalization techniques for
dimension reduction, and applications, including large-scale multiple test-
ing and variable selection, have shown that the IM framework is promising.
Given the attractive properties of IMs developed here and in the references
above, we expect to see more exciting advancements in IMs or new inferential
frameworks that are probabilistic and have desirable frequency properties.
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