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Figure 26.3_> "._l“he posterior-predictive check. In each of the two histograms, the
obs'snfed 11ke%1h‘ood ratio test statistic (the vertical line) is compared with the
posterior-predictive distribution of the test statistic under Model 0.

on the likelihood ratio test statistic,
su; CL(g
Ti(}’rep) - log{ Poce; ( '}7rep) }, 1,2,
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where ©g, @1, and @, represent the parameter spaces under Models 0, 1, and 2
respectively, and ypp, is a replicate data set. We can generate a sarr’lplu; from
the posterior-predictive distribution of Ti{yrep) under Model 0; we use the EM-
type algorithms described above to compute T (¥rep). Histograms of T} (e,) and
T2(¥yrep) appear in Figure 26.3. Comparing these distributions with the obzerved
values .of the test statistics vields the posterior-predictive p-values in Figure 26.3.
There is strong evidence for the presence of the emission line in the spectrum
Thus, Models 1 and 2 are preferable to Model 0. .
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Improved predictions of lynx |
trappings using a biological
model

Cavan Reilly and Angelique Zeringue'

27.1 Introduction

Often statistics is viewed, and taught, as a series of procedures. In this view,
methods are developed on the basis of some hypothesized data structure. The
perspective that there are fixed data structures that can be treated as a whole
misses the fascinating specificity of real-world problems. The field of time series
prediction provides an excellent example of a well-defined data structure with
a well-defined problem. In short, we assume we have a real-valued stochastic
process that depends on time and our goal is to predict values of this process at
some point in the future. If we assume the process is stationary, then there are

* representation theorems that provide us with a parameterized representation of any

such series. Hence, to predict the series, we fit one of these parameterized forms
and extrapolate. There are other classes of stochastic processes that have been
developed to deal with nonstationary seties, and while none of these has the same
status as avtoregressive moving averages, the same strategy is advocated: find a
suitable parametric form from a class and estimate the pararneters.

This general approach to statistics is often not the best approach to data analysis.
As an example, we will consider prediction of the often-analyzed series of Canadian
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lynx trapped in the Mackenzie River area from 1821 to 1934 (Elton and Nicholson,
1942). We will develop a model using just the first 80 years, and then use this
model to predict the series for the next 34 years. These data have been analyzed
dozens of times see (Tong, 1990 for a review), often by methods that have no basis
in population biclogy. For example, several early analyses fit a sine curve to the
population over time and cleaned up the remaining lack of fit with an autoregression
(Bulmer, 1974; Campbell and Walker, 1977). But why would a sine curve describe
the dynamics of the lynx population? Clearly the lynx population fluctuates, but
sine curves, or even finite linear combinations of such curves, are certainly not the
only periodic functions. Perhaps such a model even provides good predictions, but
could we do better using knowledge of the biclogy involved?

Our statistical model of the lynx series should be based on the biological con-
text. This means that the model should attempt to describe fluctuations in the series
in terms of the source of the fuctnations. As mentioned above, most approachss
to statistical models of the lynx series have modeled the series as having fluctu-
ations that are attributable to some form of autocorrelation in the series without
attempting to understand why there would be such autocorrelation. The: approach
presented here assumes that these finctuations are due to fluctuations in the pri-
mary food source of the lynx, namely, the snowshoe hare. The problem with this
approach is that there is no data on the hare population for this period; hence we
will need to impute the hare population, at least implicitly.

To understand the basis of the model developed below, we first note an impor-
tant fact about the Canadian lynx. The Canadian lynx is an unusual predator in
terms of its diet. This predator relies almost exclusively on a diet of snowshoe
hare. When the hare become scarce in a region, the lynx will either move to other
regions or slowly starve to death rather than switch their food source (McCord and
Cardoza, 1982; Keith, 1990; Poaole, 1994; Slough and Mowat, 1996; Brand and
Keith, 1979). Other similar predators, such as the bobcat, will change their diet
according to what food sources are available. Hence, our statistical model should
attribute the source of fluctuations in the Iynx population to fluctuations in the size
of the hare population.

27.2 The current best model

There have been many attempts to model the Iynx series: indeed, this series is
considered a benchmark by many who work in nonlinear time series analysis. A
rather comprehensive treatment of methods existing up to 1990 can be found in
Tong (1990). As mentioned in the introduction, the first attempts at modeling this
series combined autoregressions with sine curves. In 1980, Tong and Lim published
a paper in which they used a self exciting threshold autoregression (SETAR) to
model the lynx series. They had noticed that the series increased at a different rate
than it declined, hence sine curves were inappropriate. SETAR models can display
this behavior. Basically this model fits a different autoregression to the upswings
and the downturns in the population. For model selection issues, they employed
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" Akaike’s information criterion. Many other models have been fit to this data with

varying degrees of success. Almost all of these models have been_ based on some
proposed form of antocorrelation in the series. In reviews of various treatment.s,
Lim (1987) and Lai (1996) both rated Tong’s SETAR medel to be the best in

overall fit.
27.3 Biological models for predator prey systems

The most fundamental model of the interaction of a predator spgcies with a prey
species is provided by the Lotka—Volterra equations. These equations assume that

" the number of hare would increase exponentially in the absence of predation an.d
.. the number of 1ynx would decay exponentially in the absence f’f ha{e. In addi-
- tion, when there are lynx present in the system, the hare population will decrease

exponentially at a rate depending on the population of lynx, agd similarly the
population of lynx will increase exponentially- at a rate depending on the harz:,c
population. If #1(7) = the number of lynx at time ¢, and .ug(l“) = the n.umber o
snowshoe hare at time ¢z, then this simple framework implies th'e following set of
differential equations that describe the dynamics of the interaction between these

two species

dieq

e = gyl + Braun

dr

dit

F% = gpuy ~ Pauyug,
t

where «;, f; for j == 1,2 are posilive parameters. ) ) i

From a biological perspective, this model has the obvious shortcoming that it does
not consider the effect of other predators on the population of snowshoe hare. That
is, to have a model that represents the interaction of species in this habitat, we should

. have more terms in the second equation of the form —f;u;uy for j =3,..., J,

where J — 1 is the number of predators that consume snowshoe hare. Indeed, one
can imagine a system of equations where there is an equation for each predator .and
an equation for each prey that describes which animals consume each other in a
habitat. What makes the equation for the lynx unique is that it only‘depends on the
hare population. To take advantage of this property of the lynx equation, we suppose
there are two types of snowshoe hare: those that nftimately are consumed py l-ynx
and those that.are not. We can split the equation for the total hare population 1{1{0
two equations: one of the two equations will govern the dynamics of the population
of hare that are consumed by lynx and one equation for all the other hare. The ﬁr-st
of these equations will not depend on the population of any other preda.tor anq will
be exactly of the form of the second equation above. These two cquai:mns W.lll. be
related, but we assume that the effect of competition between hares is ncg.llg{ble
compared to the effect of birth and death on the population. Such an assumphqn isa
basic tenet of the Lotka-Volterra equations. Hence the effect of other predators is just
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that now in the basic Lotka-Volterra equations presented above, u,(2) = the number
of snowshoe hare alive at time ¢ that are ultimately consumed by lynx. Of course, we
cannot measure the number of hare today that will eventually be consumed by lynx,
but it is nonetheless a well-defined concept. Actually, just determining the number
of hare in a given habitat is a hard problem.

Another biological shortcoming of this model is the assumption that in the
absence of predators, the snowshoe hare population will increase without bound.
Clearly this is not realistic, as ultimately the food source of the hare will become
depleted. To remedy this shortcoming, other terms are often added to the tight
side of the equations that include powers of the population of the species on the
left side of the equation so that this behavior is ruled out. Rather than taking this
route, we think of the system of equations as a useful model only when conditions
are such that neither species dies out. That these conditions are applicable to the
lynx/hare system over the last several hundred years, and that therefore this model
is appropriate for the lynx/hare system, is obvious from the continued survival of
both species. .

A mathematical aspect of this model that has led some to conclude that it i§
not useful as a model in practice is that these equations are not structurally stable:
small changes in the parameter values can lead to radical changes in the behavior of
solutions. This has led some to abandon these equations or modify them to obtain
a system that is better behaved. While this instability does make model fitting
difficult, we can still use this set of equations to estimate parameters and make
predictions, as we demonstrate in what follows. We do not think this structural
instability makes the model unrealistic, as the world is full of phenomena that are
quite sensitive to parameters.

27.4 Some statistical models based
on the Lotka-Volterra system

Our first statistical model is based on the Lotka—Volterra system presented above.
We observe the number of Iynx trapped each year, y(z) for 80 years. Although the
number of lynx and hare can only take integer values, we model these quantities
by real valued processes, as in the biological models presented above. We suppose
that the expected proportion of lynx trapped each year is some constant proportion
of the total number of lynx residing in the region, so that

y(&) = aqu1()8(),

where 8(t),7 = 1, ..., 80 is a sequence of unit mean iid random variables that are
independent of u;(z). For the purposes of conducting inference, we further assume
these are Jognormally distributed errors. The resulting model has 8 parameters:
ag, oz, B1, 2, (1), uz(1), oea, and o, the standard deviation of the lognormally
distributed errors.
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This model is poorly identified; hence, we turned to the scientific literature in an
atternpt to construct informative priors. There are several methods that have been
suggested for estimating parameters in the systern. For example, one can construct
an artificial habitat for hare so that no predation takes place. Observations on the
hare population in such a setting could provide estimates of the birth rate of hare.
But even in such situations, it is not clear that the birth rate is what it would be
if there were lynx present. In any event, we can then assume that the birth ‘rate of
hare that ulﬁmate]y get consumed by lynx is the same as the overall hare birthrate
and obtain an informative prior for the birth rate parameter ap. Other methods have
been used to estimate the birthrate of hare, such as counting the mean pumber of
young surviving. Similar techniques have been used to estimate the death rate of
lynx (Pocle, 1994; Slough and Mowat, 1996; Brand and Keith, 1979).

Unfortunately, we found that unless we used prior distributions with smallex
standard deviations than the prior information really indicates, the posterior is too
diffuse, as we describe below in the section on posterior simulation. For this model,
the model parameters and the predictions themselves diverged as the Metropolis
algorithm proceeded. Despite this, the predictions of the model at the best local
mode we could find were very good, but we are reluctant to recommend the use
of such predictions in general.

A simple reparameterization leads to a model with six parameters, and the

-, resulting model behaves much better. This reparameterization can be thought of as
" just changing.the units of the system. By letting &, (¢) = Iog(ﬁgul(r)) and B () =

log(Brua(t)) we obtain the system,
log(y(®) = ap+61() + €@

déhy &
— =e? —q
dr !
d@z &
— =ay — e,
dr 2
where {f) for t = 1,..., 80 iz a sequence of independent normal measurement

errors. We then have six parameters in the model (61 (1), 62(1), og, @1, ag, and &),
Unfortunately, although it is not immediately transparent, these six parameters are

not identifiable.

To understand the nature of the identifiability problem here, we need to consider
the trajectories of the system. The systern has a mon-hyperbolic fixed point at
(61 = logos, & = logay). If we take the ratio of the equations that define the

system, we obtain the differential equation
d~91 _ Cg — ]
A9 @y —ef’

which can be solved to yield an equation that describes the trajectories of the
system in phase space

261 (1) — MO 4 a10a(8) — 629 = @0, (1) — %D a0y (1) — 2
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If we define f(x) = wpx —¢*, then f is concave and has a unique maximum
at logara, hence provided o8 (1) — e 4 g16,(1) — P20 4 5200 _ g100(1) <
a2(log oz — 1), there are two distinct solutions to the previous equation, one less
than log a and one greater than log a2, We can repeat this argument using a condi-
tion on @ (¢) too, hence the set of trajectories implied by the model is a collsction
of closed curves. Moreover, we can see from the equation that for trajectories near
the fixed point, these curves will be approximately ellipses. For the lynx data,
given this parameterization, the data supports the trajectory being very close to the
fixed point for the 8, dimension, hence an elliptical trajectory with respect to that
dimension. But if the trajectory is an ellipse and we only have data related to the
fh axis, then any translation of the trajectory along the #; axis will yield the same
fit to the data. When we. attempted to find the posterior mode or generate samples
from the posterior, we noticed that oy and ¢2(1) always moved together—this is
what we expect given the elliptical teajectories. Given this identiftability problem,
we simply fix 82(1), the rescaled initial number of hare that are ultimately con-
sumed by lynx, at some arbitrary value and use noninformative priors for the ather
parameters in the model. In general, fixing 62(1) may reduce the set of possible
trajectories, but this does not appear to be the case for this data set. Also, by fixing
82(1), we cleatly cannot interpret oy, but ey is still interpretable. The resulting
mode] has five parameters that we estimate from the data.

Prior information on the system

There have been a large number of field studies aimed at understanding the popu-
lation dynamics of lynx and hare. None of these have generated long time series
of the sort on which we will base our predictions. Instead, these studies typically
observe the numbers of animals over a short time period. Of the facts that these
studies have identified, a consistent observation has been that the lynx population
reaches its peak 1 to 2 years after the hare population reaches its peak. That is,
once the hare population starts to decline, the lynx population follows suit. The
Lotka~Volterra system has the property that periodic solutions have a fixed period,
hence we use a prior distribution on the systern that states that the difference in
time between the two peaks is 1.5 years with a standard deviation of 0.25. When
we discuss compulting the posterior at a location in parameter space we will make
clear how one can use this prier information.

27.5 Computational aspects of posterior inference

Given the structure of our model, computation is quite difficult. Note that we
have no data on the number of hare at any point in time. The point of using
the Lotka—Volterra system is to have a functional form for the number of [ynx
over time that is consistent with models from population biology. Although we
think the formulation of the system in terms of the number of lynx and hare is
quite intuitive, one can take the hare out of the system and obtain a second order
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" differential equation for the fynx dynamics. Since we ultimately solve the system

numerically, we end up converting back to two first-order equations in any event.

Computing the posterior at a location i'n_ parameter space

- Since there is no explicit solution to the system of equations. presented above,

computation of the likelihood is not straightforward. We compute the log-likelihood

_at a point in parameter space (f1(1), 82(1), wo, 1, &z, ¢) by first computing the

contribution to the log-likelihood of the first observation y(1). Since log y(1) ~

o Nlog + 61(1), 62) this term is straightforward. To compute the contribution of

¥(2) to the log-likelihood, we first numerically integrate the system forward in
time one step to obtain 1(2) and 6;(2), then we use log ¥(2) ~ N{ap + 61(2), o)

* to determine the contribution of the second time point to the log-likelihood. Note
- that 61 (2) will be a function of oy and ap. If we iterate this process, we can

compute the log-likelihood for all of the data in this fashion. Finally, given that
" we have computed the log-likelihood we simply add the terms from the log-prior
- to obtain the log-posterior.

To perform the numerical integration, we use the fourth-order Runge—Kutta

-method (for implementation see Press et al.,, 1992). In order to use a prior dis-

tribution on the distance between the peaks of the series, we need to modify the

- basic procedure outlined above. As described above, we will only have the val-

ues of the solution to the system of differential equations at integer values. While

. this is adequate for computing the log-likelihood, we actually need the vatues of

the solution for times between the integer valued times in order to determine at
what time the peak of each series occurs. To this end, we integrate the system

~ forward in time and save the solution each tenth of a year. Then we examine the

value of the solutions over this finer time scale in order to determine when the
peaks occur in each series. From the time of the peaks of the two series, it is
easy to get the distance between the peaks implied by the set of parameter values

(011}, 82(1), ep, @01, &r2). We then use this distance between the peaks In the term

for the log-prior. Since the distance between the peaks is the same for all peaks,
we can save some computational time by only integrating over this fine scale for
the first pair of peaks.

Finding posterior modes

Although our posterior is only five-dimensional, finding posterior modes is quite
difficult since the posterior is computed by numerically solving a system of dif-
ferential equations. We found that using the simulated annealing algorithm for
optimization of functions with continuous arguments presented in Press et al.

7 {1992) allowed us to find posterior modes with some success.

Since the use of that algorithm is not at all standardized, we briefly indicate

" how we were able to successfully use the method. The simulated annealing algo-

rithm of Press et al. is a stochastic mode-finding algorithm based on the downhill
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simplex method combined with a Metropolis-type algorithm. This algorithm has
three parameters whose values greatly influence the utility of the approach: the
initial computational temperature, the nember of iterations at each temperature,
and the percentage the computational temperature should decrease when lowered.
We found that using an initial computational temperature of 1 that gets lowered
every 500 iterations by 90% was useful for finding local modes here. Choice of the
initial computational temperature has, in our experience, been the most important
parameter when using this algorithm. One should monitor the best solution as the
temperature is decreased. If the initial temperature is selected too high, then these
best solutions tend not to be as good as the initial value. If this value is selected
100 low, then the algorithm usvally converges quickly to a local mode.

Simulating from the posterior distribution

Since we can compuie the log-posterior as described above, we can use the
Metropolis algorithm to draw simulations from the posterior distribution. While
we are actually only concemed with predictions based on the posterior mode, we
used the Metropolis algorithm as a check on the propriety of the posterior distri-
bution. We used the general strategy outlined in Gelman, Carlin, Stern, and Rubin
{2003): a multivariate normal jumping distribution with an estimated covariance
matrix that is scaled so that 30 to 40% of the jumps are accepted. Since we were
not able to successfully compute the numerical derivatives of the Iog-posterior
with adequate accuracy, we ran the chain for several thousand iterations to obtain
an estimate of the covariance matrix, then used this estimate in the next mn of
the chain. It was by uvsing the Metropolis algorithm with multiple chains that
never converged that we were able to conclude that the model with six parameters

and noninformative prior distributions did not give a proper posterior distribu-
tion. Similarly, when we used priors constructed from the literature, as previously

mentioned, the chains still did not mix adequately to declare convergence of the

chains (using Gelman and Rubin’s \/—ﬁ). As sometimes happens, although the pes-
terior is mathematically proper when we use informative priors, if these priors are

not adequately informative, the posterior can numerically behave as if it is not

proper.

27.6 Posterior predictive checks and model
expansion ‘

‘While the medel performs quite well n terms of prediction, if we perform diag-
nostic checks just using the first S0 years of data and our fitted model, we discover
an important discrepancy between the model and the data. In Figure 27.1, we
see a graph of the residuals at the posterior mode and a graph of the mean of
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Residuals
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Figure 27.1 The residuals at the posterior mode and the mean of the posterior
distribution of the residuals when thete is no autoregressive component. There is

“autocorrelation at one lag.

the posterior distribution of the autocorrelation function of the residuals. We do
not need to compute the posterior predictive distcibution of the residuals in this
example even though we are doing a posterior predictive check because we simply

“have iid Gaussian noise added to a functional form; hence, we know how large

the autocorrelation function should be if there is really no autocorrelation. There
is-evidently substantial autocorrelation at lag one. This is not surprising given that
there is an extensive literature indicating the presence of autocorrelation in this
series, and here we see how posterior predictive checks can auntomatically detect
-such deviations from iid errors. There are basically two potential sources for this
-aufocorrelation: the model dynamics are inadequate or the equation relating the

“dynamics to the measurements is incomrect. Since the model dynamics are based
“on the biological background, we expand our model to consider more realistic
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models for the way the number of lynx trappings relate to the number of Iynx. In
particular, the assumption that the proportion of lynx trapped is constant over time
seems questionable. We would expect that the effort of trappers to capture lynx is
a function of the demand for lynx pelts. As lynx pelts are luxury items, the demand
would be greatly affected by fluctuations in the business cycle. To model this effect,
we suppose that the measurement errors are a realization from an autoregression.
To determine the order of the autoregression, we fit the smallest number of terms
to this autoregression so that there is no autocorrelation in the posterior predictive
residuals. This exercise led us to conclude that a first-order autoregression (with
parameter ¢) is adequate to describe the deviation from iid errors. In Figure 272,
we see the residuals at the mode and the mean of the posterior distribution of the
residuals. In Figure 27.3, we see the fitted curve and the predictions for the lynx
and the scaled hare population (scaled to fit on the graph). In particular, notice the
asymmetry of the rise and decline in the populations over time.
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&
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Figure 27.2 The residnals at the posterior mode and the mean of the posterior
distribution of the residuals when there is a first-order autoregressive component.
There is no evidence for antocorrelation.
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— Lynx data

o - Lynx estimates/predictions

24 — Hare estimates/predictions
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Figure 27.3 The Iynx series, and the fitted values for the lynx and the hare. (The

- hare are scaled to fit in the graph.) The model is only fit to the first 80 years: the
" fitted values beyond year 1900 represent predictions.

277 Prediction with the posterior mode

~ Of course, without some regolarity on the log-posterior we can never be sure that
. we have really found the global optimum. After running the simulated annealing
" algorithm, for many iterations with many restarts from new locations in parameter
" space, we eventually became convinced that the best of the modes we had identified
. is the global optionum. Then we used this global optimum to make predictions. To
~ obtain the predictions, we use the parameter values we found at the optimum and
“integrate the system forward in time starting from year 80 (the parameter values are
o = 14.4309, o == 804.209, o = 0.0006318, 6 (1) = —~8.2474, th(1) = 6.6888,
o = 0.7151, ¢ = 0.7431). Although there are perhaps better ways to quantify the

guality of a set of correlated predictions, we use the root-mean-square error of the

. predictions to quantify the quality of the predictions. For the above model, this
. guantity is 1,481.6. As noted above, perhaps the most widely supported model
for this series is Tong’s SETAR model. Tong fit his model to the entire series
- of 134 observations and using some model fit criteria, he eventually arrived at a

I4-parameter model. To compare Tong's model to the model proposed here, we

- used Tong’s parameter estimates (obtained from the entire series) and with his
-.model made predictions starting from year 80 for the rest of the series. Strictly

speaking, we should compare the predictions from our model to the predictions

from a SETAR model fit to only the first 80 years of the series. In any event, the

root-mean-squared error from Tong’s model is 1,599.3; hence our model is better
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in terms of prediction even though Tong got to use more data and his model has
more than twice as parameters. While the model developed here generates accurate
predictions, there are some large discrepancies between the fitted curve and data
{c.g., around 1865). A better fit could be obtained by allowing noise in the system,
that is, use a system of stochastic differential equations. Such a model would be
more realistic as we would expect stochastic disturbances (e.g., the weather) to
impact animal populations.

27.8 Discussion

We have shown here how using models based on the science at hand, whén com-
bined with state-of-the-art statistical methods, can greatly improve our long-term
predictive ability. Similar phenomena are known to exist in prediction of economic
time series, but in that case it is usually accepted that nonstructural models, such
as time series models, can outperform structural models (those based on economic
theory) in the short term. We have also illustrated that nonlinear dynamical models
can be of use in applications, and are not useless pieces of theory from textbooks.
The numerical challenges of such model fitting are not to be underestimated, but
they are not insurmountable.

28

Record linkage using finite
mixture models

'Michael D. Larsen!

- 28.1 Imtroduction to record linkage

A goal of record linkage is to identify pairs of records (a, b), a from file A and

b from file B, that correspond to the same person or entity, If there are no unique
codes that identify the matching pairs of records, then links can be designated by
comparing variables contained in the two files. In US census operations, social
security number (SSN) is not collected, but first and last name, street address and
house number, and other information are recorded. Often a great deal of work,
including name and address parsing and standardization, is required to prepare
files for comparison. If unigue SSN’s were recorded accurately for all individuals

~ in both files, then the linkage task would be greatly simplified.

At the US Bureau of the Census, record linkage is an important step in under-
count estimation and coverage evaluation. In order to evaluate the 1990 census,
the Burean of the Census conducted a post-enumeration survey (PES). The PES

" database was matched to census records. The number of individuals counted in

both the census and the PES and the numbers counted in one but not in the other
canvas, under an assumption of independence between enumerations, yields an

. overall estimate of the population. The actual estimation procedure is much more

complicated in its detaiis, but the idea is essentially the same. The 1990 PES is dis-
cugsed in articles in volume 88 of Journal of the American Statistical Association
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