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The human genome is a dense forest
of biological information for us to
find our way through. In the past, we
could view it as a forest, comfortably
assuming the nature of its unseen
trees. But new technologies have
generated masses of genomic data
that raise unexpected challenges to a
prevailing view that grew from a
theory that melded Darwinian selec-
tion and Mendelian genetic causa-
tion. Both rested on direct, largely
deterministic, and highly simplified
concepts of the relationship between
genes and what they do.
Darwin believed that natural selec-

tion was a fine-tuning mechanism
that screened competing individuals
to detect even the smallest difference
among them.1,2 The causal elements
weren’t known, but one could assume
their existence, as Darwin did, and
study the organisms they produced. If
selection were universal, then biologi-
cal functions must have adaptive
explanations.
Meanwhile, the inheritance that

Mendel documented was probabilis-
tic, but in a very limited and rigid
way, with fixed probabilities and a
few genetically determined outcome
states. The discovery of Mendelian
determinism led to an extremely
effective genetic research program
that discovered the nature, location,
and arrangement of genes and their
protein-coding function, whose leg-
acy we are reaping today.
Although Darwin’s and Mendel’s

work developed independently and

seemed to be addressing separate
questions, by the 1930s these had
been connected into a single, simple
genetic understanding of life. How-
ever, the new data are revealing how
complex life’s genetic underpinnings
actually are. Within each cell, more
than six billion nucleotides of DNA
encode countless thousands of func-
tional elements. Each of our hun-
dreds of types of cells uses these ele-
ments differently, in different con-
texts; each element can vary among
individuals and even among cells,
because mutations occur in them
during life.

The challenge to understand this
complexity is daunting, and some
rethinking is in order. The data are
revealing deep but subtle unity of
genetic and evolutionary causation.
Some of these similarities are sum-
marized in Figure 1. For example,
most alleles (variants at a given posi-
tion in the genome) have low fre-
quency in the population, a relatively
local geographic distribution, and
small effects on phenotypes, while
common, geographically widespread,
large-effect alleles are rarer.

If we digest this new knowledge,
findings that have been seen as mys-
terious are easily explained. But
sometimes what we can detect con-
tributes less, and what we can’t
detect contributes more to our
understanding of life than has gener-
ally been thought.

INFERRING ANCESTRY: THE
CONCEPT OF COALESCENCE

To both Darwin and Mendel, a sin-
gle concept was fundamental: com-
mon ancestry. To Darwin, common
ancestry was the cornerstone of evo-
lutionary theory. If all life comes
from a common ancestor, its diver-

sity today is due to divergence from
that ancestry. In that sense, a species
is a unitary phenomenon. This is
clear in Darwin’s sole figure in The
Origin of Species, where he spoke of
the image we still use, the Tree of
Life. Mendel made a similar implicit
assumption: that all the individuals
in his pea strains were from a com-
mon ancestor. All of the ‘‘yellow’’ or
‘‘wrinkled’’ elements were identical as
a result of their inbred history.
It is because of evolution that, look-

ing backward in time, today’s varia-
tion appears to coalesce to a common
ancestor. We may think of evolution
in terms of change but, in fact, con-
servation, or homology, is essential to
understanding life, and Darwin used
patterns of conservation of traits as
vital support for his theory. It might
be seen as a strikingly satisfying con-
firmation that although Darwin had
no understanding of genetics, when
we now look at sequence data we see
the kind of conservation he would
have predicted. Indeed, Darwin’s
ideas were about the functionally
adaptive nature of traits, but we con-
firm his theory with nonfunctional,
nonadaptive DNA regions, such as
introns, pseudogenes, and intergenic
sequence, using the clock-like degra-
dation of conservation due to muta-
tions to reconstruct trees of ancestry.
According to textbook treatments of

evolution, which still repeat classical
theory, natural selection is seen as so
specific in picking favored variation
that it reduces variation between pop-
ulations and would not produce reli-
able phylogenies. But that’s wrong.
Species phylogenies, if not the timing
of their branching, can be constructed
from data in adaptive regions of DNA,
like protein-coding genes. This is
because selection picks on locally
extant variation, which diverges
between populations in tree-like ways.
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This goes further in an important
way. Sequence data have unambigu-
ously confirmed a 40-year-old idea3

that genome architecture—the na-
ture and arrangement of its func-
tional units—is the result of duplica-
tion events. This finding is vital to
understanding the evolution of new
functions.4 Periodic duplication cre-
ates gene families. The numbers and
arrangement of gene family mem-
bers also reflect phylogeny and, since
after duplication, mutations accumu-
late in the individual genes, their
sequence divergence also confirms
the tree structure in a clocklike way.
Thus, in multiple ways the evidence
from DNA sequence provides inde-
pendent, indeed striking confirma-
tion of Darwin’s ideas of divergence
from common ancestry. Independent
confirmation is among the most con-
vincing evidence in support of a
theory in science.
Furthermore, we find exceptions

that prove the rule. Phylogenetic
relationships can be problematic in
some gene families, such as the anti-
body genes, olfactory receptors, or
the SCPP biomineralization genes.5

In these families, it can be difficult
to identify specific homologues (that
is, differentiating duplicate paralogs

from directly descended orthologs).
These families exist in adjacent mul-
tigene clusters that rapidly accumu-
late sequence variation because of
their function: to recognize as many
different pathogens or odorants as
possible, or simply to capture cal-
cium ions. These functions do not
depend on high degrees of sequence
conservation, so the genes accumu-
late variation randomly or even aided
by diversifying natural selection.
Also, in dense tandem clusters mis-
alignment during meiosis leads to
frequent deletion or duplication. The
result of this variation fogs phyloge-
netic, tree-like relationships.

Phylogenetic signal is altered in
another way that we had long under-
stood in principle, but that has
become much clearer with sequence
data. At the nucleotide level, evolu-
tion guarantees there must exist a
coalescent, of which all copies today
are descendants. A perhaps surpris-
ing, but fundamental, implication is
that while each nucleotide has a co-
alescent, a single path back to a sin-
gle common ancestor, this is not so
simply true of the genes that make a
human or a pancreas.6 At each time,
each segment of each gene has
passed through differing genomic

environments. Each gene has its own
complex path to common ancestry,
and the coalescent times, places, and
individuals differ greatly. There was
never a single ancestral human or
pancreas.
There was never a ‘mitochondrial

Eve’ or ‘Y-chromosome Adam’, ei-
ther. That cute marketing device has
led countless students and professio-
nals to misperceive how evolution
works. For nonrecombining sequen-
ces such as these, we presume there
really was a single ancestral copy,
but copies of the other genes in
those individuals are unlikely to be
here today. In any case, the coales-
cent mtDNA and Y-chromosomes
would have been at very different
times and locations.7 There were
always populations.

HOW CLOSE ARE OUR
EVOLUTIONARY COUSINS?

Although human genetic data have
been accumulating for many years,
we have only recently had whole ge-
nome sequences from specific indi-
viduals. Table 1 summarizes some of
what we’ve seen so far.8 Probably the
most important single finding is the
huge number of unique or at least
very rare sequence variants (single
nucleotide polymorphisms, or SNPs).
Representative individuals from
three continents were found to have
736,261 previously known SNPs, but
an average of 754,443 variants were
unique to each individual.
This must be so: A mutation arises

about once every 40 million nucleo-
tides per parent-offspring transmis-
sion, so each newborn infant carries
roughly 155 new mutations in its
6.2 billion nucleotides. New muta-
tions start out as single copies, but
even successful ones will take many
generations to reach substantial fre-
quency in our slow-reproducing spe-
cies. As Figure 1 suggests, there will
always be vast numbers at low fre-
quency, recently arisen, geographi-
cally local, and unlikely to be
included more than once, if at all, in
random samples of individuals.
These countless sites reflect new or
very recent mutations, which should
be roughly similar in amount and

Figure 1. General trail map of the genome. Schematic distribution of characteristics dis-
cussed in the text and their general functional or epistemological nature. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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uniqueness anywhere in the world.
Hence, they are not so useful in
reconstructing population history.
They are the leaf litter on the
genomic forest floor.
Among the other noteworthy find-

ings from human whole genome
sequences is the many thousands of
protein-coding variants found in each
person. The donors have been healthy
people, usually middle-aged. This
suggests that amino acid changes are
not as uniformly or strongly deleteri-
ous as is often assumed in textbook
Darwinian theory.
To reconstruct population history,

we often rely on older alleles,
because the older an allele is, the
more geographically widespread it is.
SNP alleles found on multiple conti-
nents reflect mutations that occurred
before the human expansion out of
Africa some 100,000 years ago. These
are useful in reconstructing our spe-
cies’ global as well as local history.
Because humans typically exchange
mates from neighboring groups, this
gene flow means that allele frequen-
cies have geographic coherence; that
is, they change gradually, if some-
times irregularly, over space. Genetic
analysis shows that genetic similar-
ities roughly correspond to trees of
language and cultural evidence from
the same populations because cul-
ture also reflects population history.
But genetic variation is subtle.

We can use the frequencies of glob-
ally present alleles to examine
genetic differences within and
between sampled groups. For a per-
son with a given genotype, say AA, at
some locus, the probability may be
substantial, or even greater, that a
random individual from a different
continent, rather than from the same
continent, has the same AA geno-
type. For example, if the A allele fre-
quency is, say, 0.1 in the first conti-
nent, but 0.6 in the second, the prob-
ability of an AA genotype is only 0.01
in the person’s same continent, but
0.36 on the other continent. This
might seem to suggest that we’re all
the same worldwide, except for a few
genes like those responsible for skin
color. However, if many loci are con-
sidered genome-wide, the multi-locus
genotype similarities are much
greater among people from the same
continent than among those from
other continents.10–12 The continent
of indigenous origin is unambiguous,
even if no two people from the same
continent have exactly the same ge-
nome-wide genotype. Genome-wide,
humans carry polygenic genotypes
that differ probabilistically much as
many phenotypes are polygenic.

Genome-wide geographic affinity is
even stronger at loci that have been
affected by natural selection. This is
because selection affects the frequen-
cies of alleles that are found locally,

and they usually differ from place to
place. The picture becomes more
complex, but ancestry is clear in the
expected ways in populations, such
as that of the United States, in which
there has been recent admixture
among peoples moving there from
distant continents.
These geographic relationships

must be so if our understanding of
evolution as a phenomenon of popu-
lation history is accurate.13,14 But the
ability to use such data for unambig-
uous identification of individuals’
place of origin depends on how much
data are included and the location of
the samples one chooses to analyze.
At a more detailed local level, conti-
nent of origin may be clear, but local
group affinity less so.10 Also, nothing
in genetic data suggests categorical
‘‘race’’ divisions. It is obvious that
individuals from the same geographic
area are far from identical.12,15,16

This is strange! If races exist
according to the usual notion, mustn’t
there be genetic variation common on
one continent but absent elsewhere?
In fact, few variants are highly com-
mon in one continent yet absent else-
where. That’s what we know to expect
from human population history. Al-
leles not essentially fixed within one
continent but absent elsewhere can-
not be the basis of a categorical ‘‘race’’
in that continent.
The flood of DNA sequence data

provides excellent information for
reconstructing human history in an
increasingly fine-grained way, using a
variety of analytic approaches.17–20

But probably the most important
point is that these new data raise no
conceptual challenges to our under-
standing of human history. That
hasn’t changed substantially for deca-
des with perhaps one major exception.
Genetic data increasingly suggest

that anatomically modern humans
expanded out of eastern Africa around
100,000 years ago and somehow
replaced the hominins who had been
resident across the Old World,
adapted to all its ecological diversity,
for roughly a million years. That chal-
lenges the alternative ‘‘multiregional’’
hypothesis. There is still active debate
over when or whether, later on,
Neandertals admixed with contempo-
rary ‘‘modern’’ humans. Extensive

TABLE 1. Variation in individuals whose whole genome has been sequenced.
Numbers of known and newly discovered variants and protein-changing variants
found in sequenced individuals. Khoisan and Bantu are from southern Africa.

Schuster and coworkers9

Individual Genomic SNPs Novel SNPs Coding SNPs

Khoisan 4,053,781 743,714 22,119
1,181,663 181,427 19,593
125,848 25,485 17,739
136,985 30,963 19,226
3,624,334 412,754 17,342

Bantu 3,624,334 412,754 17,342
Nigerian 2,639,169 115,843 16,431

3,586,490 216,968 17,268
European 2,060,544 98,926 11,868

3,074,574 160,370 15,079
2,968,312 33,575 13,375
2,972,120 36,120 13,317

Asian 3,074,061 84,786 15,759
3,439,097 130,566 16,637
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sequence data from fossil specimens
are now available, and although they
are somewhat ambiguous, they cur-
rently suggest that there may have
been some admixture before Neander-
tals disappeared.21 At least as interest-
ing as detecting such admixture from
ancient DNA is the challenge to de-
velop a convincing explanation of how
the replacements actually happened
and whether they were based on cul-
tural differences alone or involved
genetic differences.

MAPPING GENETIC CAUSATION

As we wander through the thicket
of our genome, it is natural to ask
what all that DNA is doing. What
are the phenogenetic connections
between genes and traits? There are
many ways to identify genetic causa-
tion. The easiest cases for us are the
same as Mendel’s. When there are
two very different true-breeding
states, such as a serious disease
involving a known protein, we can
identify and sequence the gene to
find the responsible variants. Hun-
dreds of such traits are known (see,
for example, www.ncbi.nlm.nih.gov/
omim), though once the gene is iden-
tified, much more allelic and pheno-
genetic complexity is usually discov-
ered. There can be many alleles;
their penetrance, or the probability of
manifesting the trait, can be low.
More interesting and more chal-

lenging are the complex traits having
variation that is of primary interest
to both evolutionary anthropology
and public health. When the underly-
ing biology is largely unknown, as is
the case for many psychiatric or be-
havioral traits, or too complex to
understand from physiological stud-
ies alone, as in diabetes or obesity,
various approaches are used. These
are known as mapping methods.
Their objective is to search the entire
genome to find genetic variation that
is statistically associated with varia-
tion in the trait.
The favored mapping approaches

today are called genome-wide associ-
ation studies (GWAS). Sampled indi-
viduals such as cases and controls
for some diseases state are geno-
typed at large numbers of genetic
markers, or variable sites of known

locations spanning all the trees in
our genome forest at regular inter-
vals. The idea is that the gene or
genes having variation that is re-
sponsible for our trait’s variation
must lie chromosomally near to, and
thus be statistically associated with,
at least one of the markers. The chro-
mosomal region can then be
explored to identify the causal ele-
ments.

A remarkable feature of mapping
is that it can be done for any trait,
normal or otherwise, even if nothing
is known about its biology. In this
sense, genome-wide mapping is free
of specific hypotheses about the na-
ture of the trait, except that genes
somehow affect it.

Mapping involves only present-day
variation, but it is actually an evolu-
tionary approach because it relies on
the assumption of identity by descent.
It assumes that specific nucleotide
changes rarely recur within the same
population, so that a marker allele
found in two different individuals
(say a G rather than an A in a given
genome position) are descendant
copies of the same ancestral muta-
tion, that is, today’s copies coalesce
to that event. The same assumption
is made regarding the unseen
sought-for causal variant responsible
for the phenotype (for example,
affected versus unaffected status)
that is chromosomally near the typed
marker.

The history of joint transmission
of marker and causal allele generates
a statistical association between
them, which is why the typed marker
allele points to the unknown causal
one. Fortunately, humans are a
young species, with major recent
expansion from small ancestral pop-
ulations. Rapid, recent expansion
preserves association among chro-
mosomally nearby alleles. We are
now awash in mapping results. For
obvious funding reasons, most of the
data are from studies of human dis-
ease, though the picture is the same
for variation in normal traits that
have been studied. The results are
rather telling.

Assessments of the success of
extensive GWAS vary. Some, espe-
cially those with the greatest vested
interest in the approach, give a very

positive assessment,22,23 while others
are more circumspect.24,25 Nobody
disputes the typical findings: a few
chromosomal locations generate stat-
istically believable evidence of effect
(Fig. 2), but each such effect typi-
cally accounts for only a fraction of
the overall genetic effects as mea-
sured by its heritability; that is, by
the degree to which the traits cluster
in families.24,26 What is disputed is
how well various technological adjust-
ments and augmentations might raise
the explained fraction, or whether the
small fractions generally accounted
for to date are ‘‘important,’’ as in
potential clinical applications. For
example, it is argued that even if a
low-penetrance gene’s contribution is
too weak to be directly important, it
may at least identify unsuspected
causal gene networks that can be
investigated.
There are evolutionary issues here.

Much of the infrastructure for GWAS
was based on the assertion that, in
general, common variants would
account for common disease.27 Pre-
dictably, this was wishful thinking
for evolutionary reasons that anthro-
pologists, if not biomedical geneti-
cists, should have recognized.28,29

Given the heterogeneous, stochastic
nature of evolution, which generates
the kind of causal spectrum illus-
trated in Figure 1, there will be traits
for which a few relatively common
variants do account for much of at
least the pathologically interesting
variation. Age-dependent macular
degeneration and Factor V Leiden
clotting factor are examples. For
most traits, however, many genes,
even hundreds, appear to contribute
in aggregate, but individually only
very slightly.30–33 Yet to date, after
many studies with dense markers,
hundreds of these minor contribut-
ing genes typically remain unidenti-
fied.34

Complicating this picture is that in
searching a chromosomal region
implicated by GWAS mapping, we
are drawn to genes because it is easy
to identify alleles that change an
amino acid or disrupt the protein
code. But for most normal traits and
most complex diseases, with which
individuals can live normally for dec-
ades, altered timing and level of gene
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expression may be more important
than altered gene structure. GWAS
hits to date generally support this ex-
pectation. Unfortunately, identifying
regulatory sites is still an art form. It
remains a major challenge to identify
the specific causal variants in regions
implicated by mapping.
Given the statistical vagaries of

complex effects, usually rare and
weak, mapping hits can be quixotic,
appearing to have an effect in one
study but not in the next.25 The sta-
tistical significance criteria for iden-
tifying hits in GWAS typically lead to
upward bias in estimates of effect
strength.35 Even if there is no genetic
effect, if you search hundreds of
thousands of markers you will find
many that seem significantly associ-

ated with your trait. To account for
this, replication is critical. Because
of the cost and difficulty of GWAS,
meta-analyses are undertaken, pool-
ing data from existing studies to
attempt to increase sample size and
find the truly genuine effects.36,37

The idea is that a real effect should
be found in different samples.

However, an allele’s effect will be
consistent only to the extent that the
background of environmental and
other genomic effects are reasonably
similar among study samples. Refer-
ring again to Figure 1, what we know
of evolution warns that this is a
problematic assumption except for
major effects with allelic cause that
is old enough to be present with suf-
ficient frequency in different samples

or populations, and strong enough to
be visible against locally specific ge-
nome-wide variation in other con-
tributing genes, not to mention envi-
ronmental exposure differences. This
means that even true findings from
one study need not be replicable in
other studies.
At least as important as the fact

that most mapping hits are not repli-
cated is that the few that are, even in
total, usually account for only a frac-
tion of the variation. Human stature
is perhaps an archetype, because it is
one of the most highly heritable
traits known. At least 80%, and in
many estimates over 90%, of the var-
iation in height, adjusted for cohort,
is genetic as measured by various
data such as parent-offspring corre-
lations.28,38 Large GWAS have found
that the roughly 100–200 most statis-
tically significant genome locations,
out of hundreds of thousands tested,
account in aggregate for only 10% of
stature variation, less than 15% of
the overall genetic contribution.38–40

These results frustrate the often-
claimed hopes of a bonanza of easily
identified genes with major impact.41

But what we have seen so far is abso-
lutely expected on evolutionary
grounds, and it is not difficult to see
why. The multilocus nature of com-
plex traits has been known for decades
from statistical studies of phenotype
correlations among relatives and
measures like heritability.42,43 Com-
plex traits have been assembled bit by
bit over millions of years, involving a
highly intricate fabric of cooperation
among many different developmental
signaling and homeostatic gene net-
works.44 Regulation of even a single
gene involves tens of transcription fac-
tor proteins, which are coded by other
genes that themselves need to be regu-
lated. Such regulation also involves
comparable numbers but more com-
plex DNA-based transcription factor-
binding sites flanking the regulated
gene. Alteration of the coding or regu-
latory sequence in any of the partici-
pating genes can generate phenotypic
variation. Mapping approaches are
designed to detect those effects. How-
ever, when there are tens, hundreds,
or even thousands of contributing
genes, as some estimates from various
mapping approaches estimate, it is no

Figure 2. Representative sample of GWAS results. Large case-control study of around
2,000 cases for each of seven major chronic diseases in Britain and about 3,000 controls.
Each row portrays the aligned entire genome (except the Y chromosome); the chromo-
somes are numbered and identified by alternating dark and light bands. For a given trait,
moving along the genome, each dot reflects, by its vertical position, the statistical signifi-
cance of marker alleles at its location; the plot looks mainly solid because a total of
�500,000 markers spaced across the genome are crowded into each row, and most sites
generate very low significance. Only a few statistically significant ‘‘hits’’ are found for
any trait (three examples indicated by arrows). Reprinted by permission from The Well-
come Trust Case Control Consortium.26 [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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surprise that we are not finding much,
even when a trait really is highly ge-
netically controlled.
We know from protein and gene-

regulatory structure that mutations
have a distribution of relative effect in
the genotypic ecology of traits. There
are exceptions to almost every general-
ization about life but, as shown in Fig-
ure 1, the relative effects of known al-
leles are usually inversely related to
their frequency in the population.24,45

Most nonlethal mutations have mini-
mal effect, muted by complexity, and
are contextually dependent on the
environmental and genomic back-
ground of individuals carrying them.
These contextual effects can be of the
same order of magnitude as that of the
allele under consideration. Indeed,
recent estimates are that around 10%
of known serious-disease-causing al-
leles in humans are the normal allele
in other mammals.46,47 The fact that
effects found by mapping depend on
the genomic background has also rou-
tinely been shown by the fact that an
allele with a major effect in humans
has similar effects only in some strains
of laboratory mice, and sometimes no
effect at all.
A consequence of the very low,

rather than high, frequency of alleles
that do have independently strong
effects is multiple unilocus control, in
which each individual or family with
an unusual trait value is so because of
a different rare mutation. There are
many examples of this, such as heredi-
tary deafness and retinitis pigmentosa
(an eye disease). Such case-specific
effects are naturally difficult to repli-
cate. Things may be even cloudier if,
as seems likely, instances of unusual
trait values are due not to single rare
alleles, but to combinations of them,
which means that each case will be a
unique genotype.25,48–50 This is just
what we expect evolution to generate:
major effects will be rare and elimi-
nated if harmful, or quickly raised to
high frequency if helpful. But most
will be recent and rare (Fig. 1).
From a biomedical point of view,

these issues are important to those
who believe that the future major
advances in health depend on person-
alized genomic medicine, in which
the idea is to predict a trait, especially
a disease, from an individual’s geno-

type. And if it works for disease, de-
signer children will be next. But the
complexity of genetic causation, as
well as its evolutionary explanation,
are clear. Genes do not act alone.
Thus, there is more in the forest to
make our way through than just indi-
vidual genes.

DNA is inert by itself, and the effect
of a gene depends on its context,
which includes the rest of the genome,
the cells in the organism, and the
external environment.51–53 The envi-
ronment even includes the genomes
of other species, such as symbiotic
bacteria in our gut. In utero gesta-
tional conditions can affect an indi-
vidual’s lifetime phenotypes, includ-
ing level of body fat, diabetes, cancer,
and aging.51,54 These can in turn be
imprinted by means including epige-
netic modification of the DNA that
affect gene expression but not DNA
sequence, and then inherited by the
subsequent generation.51,55

Complicating all of this environ-
mental underbrush is a serious but
unappreciated fact, that estimating
phenogenetic effects is necessarily
retrospective: We observe phenotypes
of individuals today and relate those
to the sampled individuals’ geno-
types. Yet what we want in the drive
for personalized genomic medicine is
to make prospective phenotypic pre-
dictions for genotypes for individuals
in the next generation. Selection only
works on the manifestations of geno-
typic effects in the environments at
any given time; the past is not always
prologue. Nonetheless, we may be
able to do better at clearing the path
than we have done so far.

SIGNIFICANCE BEYOND
‘‘SIGNIFICANCE’’

There may be few giant oaks in our
genomic forest, but we should also be
able to find the smaller trees. More
intense and clever mapping ap-
proaches will help, but it seems clear
that this will largely yield more, even
smaller effects than we already know
of. But we can gain a better under-
standing of genetic causation in a dif-
ferent way, taking a hint from the ob-
servation that criteria such as parental
trait values—Francis Galton’s original

criteria for the heritable effects of
quantitative traits—currently yield bet-
ter predictions of offspring trait values
than do genes identified by conven-
tional GWAS.56 This is easy to under-
stand. Correlations among relatives
aggregate all genetic effects without
the need for them to be enumerated.
The problem is simple. We have

been rooted by tradition into using
statistical significance tests as the
criterion for discovery. But if we test
hundreds of thousands of markers at
the usual p-value of 5% as the signifi-
cance cutoff for a marker’s effects,
we may detect not only real effects,
but also thousands of false positives
(5% of 100,000 means 5,000 false-
positive tests). Such numbers would
be impossibly costly to follow up. So
a typical approach has been to insist
on a more stringent cutoff criterion,
such that there is only a 5% chance
of falsely finding any genome-wide
signal. Such a revised significance
cutoff, called the Bonferroni correc-
tion, is often applied essentially by
dividing 5% by the number of tests.
So for 10 tests one would only accept
an individual test having a p-value of
0.5%. However, when thousands of
tests are done, such a correction is
so stringent that minor truths are
almost inevitably missed. Attempts
to ameliorate this problem adjust in
the opposite direction, using weaker
cutoff criteria for ‘‘suggestive’’ signifi-
cance or a more forgiving false dis-
covery rate (FDR) criterion.57 But
any significance cutoff criterion is
not only subjective, but intentionally
tolerates the omission of weak but
true effects. What if we just ask what
the data tell us overall?
In fact, if the stringency of hypothe-

sis testing is relaxed, it is possible to
be more inclusive and to identify
many more of the contributing genes,
and even to use them to predict phe-
notypes of individuals much as classi-
cal parent-offspring regression analy-
sis does. Instead of concentrating on
the few ‘‘significant’’ results by an a
priori standard, one can apply a well-
established statistical classification
approach, called a receiver operating
characteristic, or ROC.58 That
approach gradually relaxes a cutoff
criterion such as the p-value or some
other measure of effect, which is
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applied to each tested marker site
across the genome, and asks how well
the set of sites included by the relaxed
criterion predicts the sampled individ-
uals’ phenotypes. At some cutoff
level, the accuracy of prediction, or
fewest misclassifications, will be
optimized, greatly increasing the
predictive power of a GWAS sam-
ple.59–62 Similar inclusive approaches
can help GWAS results identify gene
networks that contribute to a tested
trait.25,32,63–65

This approach has been applied to
human stature. As noted earlier, stat-
istically significant stature-mapping
hits account for only about 10% of
the heritability. An inclusive
approach did much better, account-
ing in the same data for much more
of the heritability.40 Many different
kinds of genes were in the mix of
contributing genes, but there was
some statistical clustering of hits in
genes related to skeletal biology.39

This directly confirms the classical
model of polygenic inheritance as
articulated by Fisher in 1918.66 A key
feature of Fisher’s model is pheno-
genetic equivalence, according to
which, when many genes contribute
to a trait, different genotypes can
produce the same phenotype, such
as a given height. However, the fact
that we can confirm this classical
theory does not lessen the problems
we face, which are both practical
and evolutionary. For example, the
authors of the largest stature study
to date39 estimate that it would
require a sample of nearly 500,000
people to identify an estimated 700
loci that could account for 15% of
the total variation. However, even
that is only about 20% of the overall
genetic contribution as measured by
the heritability. Only a tiny fraction
of these loci have individual signifi-
cance, much less useful predictive
effects. The rest have predictive value
only in combination, which is unique
for each individual.
While confirming classical poly-

genic theory this theory, combined
with what we know of human popu-
lation history, implies that the geno-
type cannot be inferred from the
phenotype. The set of contributing
variants and their frequency will vary
from sample to sample and from

population to population. Many, if
not most of these genes, will have
many alleles.39 Also, phenotypes can-
not reliably be predicted by geno-
types. GWAS-based estimates of an
allele’s effects may help account for
variation in that sample, but will do
so to a lesser and unknown extent
for other samples even from the
same population. This knowledge
turns our attention back to evolu-
tion, because if we cannot infer indi-
vidual genetic causation with all our
genotyping technology, natural selec-
tion cannot work directly at the indi-
vidual gene level either.

THE SEARCH FOR EVOLUTIONARY
MEANING

If the genomic data have shown us
the problems in inferring gene func-
tion in contemporary samples, what
can we say about the role of natural
selection in molding that function,
especially as it applies to our own
species? In principle, selection leaves
various kinds of signatures in DNA
sequence.67–70 Each has an optimally
informative time depth, as shown in
Figure 3. For example, adaptive func-
tional changes are expected to be
few relative to all changes, so that
time must elapse before enough
changes so as to be detected
can accumulate. Heterozygosity (se-
quence diversity) in and around the
favored gene will be reduced by
selection. There may also be more

derived (new) alleles relative to the
ancestral alleles if selection has been
favoring those new alleles.
Figure 3 also shows that under

selection populations will diverge in
the region of an allele favored in one
population but not another, and that
the evidence of this differential selec-
tion can persist for a considerable
time. When selection increases the
frequency of an allele, the haplotype
the allele is on—the particular
sequence variants in the surrounding
chromosome region—will be longer
and increased in frequency. That is a
signature of recent selection, because
over time recombination and muta-
tion will erase the evidence of this
hitchhiking effect in the sequence
flanking the favored allele. Related to
this, the coalescent of a gene’s
sequence will be unusually recent if
it has been affected by selection.71

Natural selection generally reduces
variation in affected genome regions
relative to neutrally evolving regions.
The easiest reduction to detect is from
purifying selection, which rejects
harmful mutations, presumably
because it is easier for mutation to dis-
rupt well-established function than to
improve it. Purifying selection is
reflected in the evolutionary conserva-
tion of protein-coding (exon) or known
regulatory regions. But such conserva-
tion is generic, affecting all genes.
What we most want to find are the
fewer nonconservative changes that
reflect positive, adaptive selection that
has built new ormodified function.

Figure 3. Some DNA sequence-based tests for selection and the approximate time-depth
for which they are informative relative to human settlement history, Human geographic
history is shown on the bottom, based on 1 generation ¼ 20 years. Laid onto that history
above are the optimally informative time depths of various aspects of sequence data
that may reflect a history of natural selection. For examples, see text. Redrawn after
Sabeti and coworkers.72 [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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In this context, an obvious ques-
tion to ask of our new genome-scale
data is what are the genetic changes
that made us human? We can
address that question by comparing
our genome sequence to those of our
closest ape relatives. Aligning the
two sequences is easy, but the inter-
pretation is not. We are only 6-7 mil-
lion years apart from our closest ape
relatives and our genomes are 95%
or more identical in any pairwise
comparison (in nonrepetitive DNA).
That’s a lot of similarity, but 5% of
3þ billion nucleotides is a typical dif-
ference of over 150 million. Under
the slow pace of most natural selec-
tion, it is difficult to detect the addi-
tional divergence in functionally
adaptive DNA relative to neutrally
evolving divergence.
In genes affected by adaptive selec-

tion, we can expect relatively more
amino-acid-changing mutations than
synonymous mutations. A standard
statistical test called the McDonald-
Kreitman or MK test73 can be
applied, but even with selection the
number of altered amino acids
required for adaptive change in a
given gene without causing more
harm than good would likely be one
or a very few. These can be very diffi-
cult to detect statistically relative to
the few synonymous changes in the
same gene. Moreover, most adaptive
changes have probably involved gene
regulation (level, timing, cell-specific
location) rather than protein struc-
ture, which is consistent with the
GWAS findings in contemporary var-
iation. The reason is that most genes
are pleiotropic; that is, they have
many functions, which are often
unrelated. An amino acid change is
unlikely to be helpful for all of these
functions and might usually be
rejected by selection. But expression
is controlled by short modular regu-
latory transcription-factor binding
sites flanking a gene, which partition
a gene’s use in context-specific
ways and can be easily altered by
mutation.
Unfortunately, detecting signatures

of selection in short regulatory
regions is much more difficult than
in coding regions. We simply are not
yet good enough at identifying regu-
latory regions, which are complex

and not located in fixed positions, to
achieve effective identification and
comparison.

However, it is possible to slide a
‘‘window’’ along the aligned chim-
panzee and human genomes to
search for regions that are much
more divergent than average, regard-
less of known function, hence freeing
our attention from the restriction of
protein-coding regions. Such regions
have been found (Wikipedia: human-
accelerated regions). Attention has
naturally concentrated on genes with
brain-related function, but the pro-
posed explanations to date have been
speculative at best.

What about adaptive changes that
may have occurred within humans
since our separation from other pri-
mates? Although genetic data reveal
the vagueness of racial classification,
obvious human phenotypic differen-
ces such as skin color are geographi-
cally patterned and are often attrib-
uted to selection. Can we find the
genetic evidence for that?

The easiest examples to find are
adaptive responses involving only one
or a few genes. The classical example
is the globin gene variation, which pro-
vides resistance to malaria. Selection
has been recent and very strong
although even here many mutations in
different components of hemoglobin,
differing within and among conti-
nents, have been found. Many genes
related to skin pigmentation are
known. Signatures of selection in these
genes have been found, most likely
reflecting geographic variation in ex-
posure to ultraviolet light, but again
with different genes involved on differ-
ent continents.74 Another classic case,
perhaps the simplest, involves the
adult ability to drink milk, which
seems to have resulted from selection
involving expression of the lactase
(LCT) gene, independently in Euro-
pean and African populations with a
long history of dairying.75,76 Also,
recent evidence implicates genes in the
HIF oxygen responses system in adap-
tation to high altitude.77,78,90

More problematic are the results of
general genome-wide searches for
selection in which the objective was
analogous to GWAS mapping: to let
genome-wide data show us where
selection has occurred so we can then

identify the gene and try to under-
stand the reason. On example is
change in the frequencies of existing
alleles in response to environments
changed, for example, by climate.79,80

Despite many searches, I think it is
fair to say that only a modest number
of convincing signatures of selection
have been identified.69,81–83 Most
studies have involved comparison of
only a few samples, usually represen-
tative of only a part of a continent
(for example, one sample each from
west Africa, northern Europe, and
east Asia). The results are similar to
those of GWAS in that few hits were
found, and they did not always
include the known cases such as
those mentioned earlier. There are
many reasons for this. Even when
selection is presumably clear, sam-
ples from west or south Africa cannot
detect evidence of selection for adult
lactase persistence at LCT that
occurred in eastern Africa. But the
problem is worse than this.
Figure 4 shows some of the results

of a more fine-grained geographic
sampling. About 80 positive signals
were found scattered across the ge-
nome. A few were found globally, but
most were detected only in samples
from a restricted geographic region.
This is an improvement, but the result
still seems strange. Even including
just six world regions, with our 23,000
protein-coding genes, that’s over
120,000 tests, not counting the many-
fold that many tests were done over
other functional regions, like regula-
tory sequences, which the genome-
spanning markers also queried. Yet
from Tierra del Fuego to Cape Town,
we vary in almost every trait inside
and out, from lowland to highland,
wetland to dry land, continent to
island, and tropics to ice-land. If life is
as relentlessly Darwinian as its popu-
lar image, where is the evidence?
The answer is that the same prob-

lems challenge selection mapping
that challenge the GWAS trait-map-
ping discussed earlier, and for the
same reason. Most traits are affected
by variation in large numbers of
genes. Different genotypes at these
loci can generate the same pheno-
type, and they will be selectively
equivalent to each other. Selection is
usually weak, only trimming away the
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worst or favoring the best tip of the
tail of the phenotypic distribution.
The net selective coefficient favoring
the individual alleles at a given locus
will be weak to very weak. Under
these conditions, the fate of most
individual alleles is largely deter-
mined by drift rather than selection.4

A few have stronger effect and
respond faster to selection, and these

are the ones we detect. Selection can
push a trait in some direction, just as
Darwinian models posit, but we
would still not expect to identify most
of the contributing genes.

This is just what we find. There is a
high correlation between the frequency
of selectively favored alleles and geogra-
phy, as would be expected under drift,
and as we find in the data described

earlier.84 This has recently been
described as ‘‘soft’’ selection rather than
strong selective ‘‘sweeps.’’84,85 But we
don’t need these artificial terms because
we’re just observing the kind of direc-
tional adaptive selection on polygenic
traits that is what we should expect.
There is no more surprise here than in
the widely proclaimed mystery of the
failure of GWAS to account for the her-
itability of complex traits. The faulty ex-
pectation was not in the stars, but in
ourselves, that we have been understat-
ing the problem.
Following again the trail-guide in

Figure 1, most alleles are rare and, if
viable, have small effect, if any, on a
trait, and hence small individual
effects on fitness. We expect occa-
sional alleles with nontrivial effects
and/or higher frequency to be pres-
ent at any given time. If it is an old
allele, it can be frequent and widely
dispersed enough to be replicated in
different studies. But the signature
of a local selection history is detected
only in the appropriately geographi-
cally restricted sample.69,70,72,84 All of
this is just what we see.
The genetics of stature illustrates

the connections between trait map-
ping and selection mapping in
another revealing way. Stature was
measured in the Swiss canton of
Schaffhausen in the 1880s and again
in the 1980s.86 Because of dietary
and other life-style changes, the dis-
tribution shifted to the right, toward
taller mean stature, over this cen-
tury. Just as selection for increased
stature would favor alleles with a
strong effect in that direction, envi-
ronmentally induced stature increase
should lead to a greater contribution
by the most responsive alleles. If cau-
sation were simple, with only a few
such genes, we should find them as
major mapping signals today.45 But
we don’t.
As with genome mapping, searches

for selection have tended to rely on
statistical cutoff criteria. But this is a
subjective decision, an artifact that
need not be applied to the evidence.
In the same way that relaxing statis-
tical cutoff criteria identifies more
genome regions that contribute to
phenotypes, relaxing significance cri-
teria can also identify more of the
regions contributing to adaptive

Figure 4. Geographic patterning of statistical evidence for selection. Each row represents
a chromosome location labeled left and a candidate gene labeled right (where known).
Columns are geographic regions: Middle East, Europe, Central/South Asia, East Asia,
Oceania, Americas. The gray scale denotes relative statistical significance. The identity of
the genes is unimportant for the points being made here. See Lopez Herraez and co-
workers69 for details.
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change (unpublished work in pro-
gress). But its power to assess fitness
will lie in the aggregate rather than
individual genes.

THIS IS THE FOREST PRIMEVAL

We have all been trained to a gene-
centered view of life. Mendel’s
experiments provided a powerful
research approach to identify and
understand aspects of genes and
their function under clear-cut condi-
tions. But that lured us into expect-
ing that simple control and adaptive
evolution were more general charac-
teristics of traits. ‘‘Mendelian’’ dis-
eases were carefully chosen instances
of tractable inheritance to study
genetic causation in which there
were few strong effects. Traits like
sickle-cell hemoglobin and malarial
resistance gave a similarly simplistic
impression of Darwinian evolution
by a few very strong adaptive effects.
But these were always illusory sim-
plifications.
Evolution is a flow-through of vari-

ation added to by mutation, recombi-
nation, and gene flow, and lost to
selection and drift. But causal and
hence evolutionary specificity are far
more fluid than we had thought, and
hence less tightly connected. Evolu-
tion works by phenotype, not geno-
type.87 Even when evolution is
affected by selection, if many genes
are involved in a trait there can be
phenogenetic drift.88 The trait can
persist while its underlying genetic
basis changes. Among populations
and over time, the same trait can
come to be produced by different ge-
notypes, with different relative con-
tributions from different variants at
the same genes or even from entirely
different genes.89 Phenogenetic drift
is the evolutionary equivalent to the
multiple genoptypes that generate
the same phenotype in complex
traits, and that means many paths to
the same fitness. To a considerable
extent, natural selection may rule the
phenotypes, but drift rules the
underlying genotypes. Even if there
were no environmental effects and
every instance of every trait were
strictly controlled by genes, the con-
nection between specific genes and

specific phenotypes would be quite
fluid.

As hundreds of known ‘‘Mende-
lian’’ diseases show, some mutations
in critical genes can cause serious
diseases, but most genetic variation
has small, subtle, contingent effects
on traits. This is why GWAS do not
find them. For the same reason, al-
lele’s with major effects usually
reduce fitness greatly, so that it is the
variation with minor effect that may
be the basis of most adaptive evolu-
tion. This is why searches for selec-
tion can’t find them either. This is no
surprise, but is quite different from
the usual image of natural selection.

Overall, complex genetic architec-
ture with the general attributes shown
on the left of Figure 1 is a common or
even predominant characteristic of
life. That means that some signals will
be found, but may be over-interpreted
as being more important than they
are because so much of the signal is
undetected or changeable. Searches
that find little will under-interpret that
as no evidence because of a lack of
single genes that, in a given study,
happen to have statistically detectable
effect. Interpretations of GWAS and
searches for signatures of selection
alike have tended to overstate the few
positive findings and to wring hands
over the common failure to find more.

As things look today, these are
facts of nature, not reflections of
inadequate technology or sample
sizes. Pleiotropy and multilocus cau-
sation are, in a sense, fundamental
to the way nature has assembled
complex traits over the eons of his-
tory. Even if the screening eye of
natural selection is ever-present, it is
not all-seeing in gene-specific terms.
And if, as the evidence suggests and
as makes theoretical sense, drift vies
with selection in determining the
fates of alleles, a very different pic-
ture of evolution emerges at the phe-
notype versus genotype levels. That
picture requires some rethinking on
our part. Our simple Mendelian-Dar-
winian world view is wearing thin as
a theoretical basis for evolution and
for interpreting the causal forest that
is our genome.

The challenge to rethink may apply
nowhere so much as it does to an-
thropology. This is because of the

complexity of our cultural environ-
ments, resulting in behavior that is
not transmitted as genes are, has
only loose relationships to the
‘‘objective’’ environment, and cannot
be predicted by wiring diagrams or
brain scans. But anthropology has,
as a rule, not been very deeply aware
of modern genetics or even evolu-
tionary theory. It has been easier,
and acceptable, for us to live in a
land of speculative story-telling. But
the new data are showing us that
telling stories is not enough.
Instead, we’re learning the limita-

tions of a focus on the genetic trees
rather than the organismal forest.
This is the legacy of the relatively lit-
tle genetic knowledge that was avail-
able in the past and the research his-
tory that was enabled by Mendel’s
discoveries and Darwin’s simple ‘law’
of natural selection, both of which
led us to focus on the tail of the cas-
ual distribution that easily fits those
expectations. But that leaves the rest
of the distribution, the bulk of what
the genome does and how we evolve,
poorly understood and sometimes
hardly even acknowledged. Even
with a trail map such as that given
in Figure 1, the gene trees are elusive
and rapidly changing. They may not
even be enumerable as we try to
grasp the nature of the forest that is
our genome.

NOTES

I welcome comments on this col-
umn: kenweiss@psu.edu. I co-author
a blog on relevant topics at EcoDevo
Evo.blogspot.com. I thank Anne
Buchanan and John Fleagle for crit-
ically reading this manuscript.
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