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WEIGHTING AND PREDICTION IN SAMPLE
SURVEYS

RODERICK J. LITTLE
University of Michng;a, USA.

ABSTRACT : A fundamental technique in Survey sampling is to weight
included units by the inverse of their probability of mclusion, which may be
known (as in the case sampling weights) or estimated (as in the case of non-
response weights or post-stratification). The technique is closely associated
with the design-based a.ppréa,ch to survey inference, with the idea that units
in the sample are representiﬁg @ certain number of units in the population.
I discuss weighting from a modelling perspective. Some common misconcep-
tions of weighting will be addressed, including the idea tha modelers can
ignore the sampling weights, or thag weighting necessarily reduces bias at
the expense of increased variance, or that units entering the calculation of
nonresponse weights should he weighted by their sampling weights. A robust
model-based perspective suggests that selection weights cannot be ignored,
but there may be better ways of incorporating them in the inference than -

via the standard Horvitz-Thompson estimator and its variants,

Keywords and phrases : Bayesian methods, Design-based inference,
Sampling weights, Regression, Robusiness, Survey sampling.

1. INTRODUCTION

It is an honor to write an article in celebration of the diamond jubilee
of the Calcutta Statistical Association Bulletin, a venerable statistical
institution, and to acknowledge the profound contribution of Indian
statisticians to progress in our field. Historically, this is clear when we
consider the influence of major Indian statisticians like Basu, Gnanade-
sikan, Mahalanobis, and more vecently C. R. Rao, not to mention the
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distinguished Rao’s with other initials, and many others. Personally,
my career has been enthanced by numerous friendships and encounters
with Indian statisticians; my boss in my first real job at World Fertility
Survey was the demographer VC Chidambaram {Chid to all who knew
him) who was a sympathetic colleague and strong leader; another fine
colleague at World Fertility Survey was Vijay Verma, an outstanding
student of Leslie Kish who played a leading role in sampling activities in
that large study. More recently, I have since collaborated extensively
with my colleague Trivellore Raghunathan at Michigan, on topics of
sampling inference and missing data. Indeed Biostatistics at Michigan
has a strong Indian representation in terms of faculty and students.

I write about on the role of weights in the analysis of survey sam-
ples. Probability sampling is one of the key contributions of statistics,
and this is an area where Indian statisticians have made seminal con-
tributions (e.g. Mahalanobis 1943; Godambe 1955; Basu 1971; Rao
1997, 2003). Many of the key aspects of probability sampling, includ-
ing stratification and multistage sampling, were first implemented on a,
large scale in India. It has interested me since my time working at the
World Fertility Survey, where the virtues of probability sampling were
widely touted by Sir Maurice Kendall and Leslie Kish, and the question
of making analytic inferences that incorporated the survey design was
of great interest. As a statistician drawn to the Bayesian paradigm
for survey inference, sample surveys are a challenge since the prevail-
ing paradigm of survey sample inference is design-based, and survey
samplers have a widespread distrust of models.

2. Survey WEIGHTING, PREDICTION, AND DESIGN VS.
MODEL-BASED INFERENCE

The clash between two approaghes to weighting survey data puzzled
me as a student of statistics. Early on we learn about linear regression,
fitted by ordinary least squares (OLS), which is optimal for a model
that assumes that the residual variance is.constant for all values of the
covariates. If the variance of the residual for unit 4 is ¢%/u; for some
known constant u;, then better inferences are obtained by weighted
least squares, with unit ¢ assigned a weight proportional to u;. This
form of weighting is model-based, since the linear regression model for
the outcome (say Y') has been modified to incorporate a non-constant
residual variance.
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Later I took a course in survey sampling, and learnt about a different
form of weighting, based on the selection probabilities. If unit 5 is
sampled with selection probability u;, then the survey sampler replaces
OLS by weighted least Squares, weighting the contribution of unit i to
the least squares equations by w; 1 /s, the inverse of the probability
of selection. This form of weighting is design-based, with m; Telating
to the selection of units - since unit ¢ “represents” 1 /7 umits of the
population, it receives g weight proportional to 1/#; in the regression.

Both forms of weighting seem plausible;but they are not necessarily
the same. So which is correct? The answer is not obvious - the role
of sampling weights in regression has been extensively debated in the
literature - see for example Konijn (1962), Brewer and Mellor (1973),
Dumouchel and Duncan (1983), Smith (1988), Little (1991), Pfeffer-
mann (1993), Korn and Graubard {1999). In fact, it rests fundamen-
tally on whether one adopts a design-based or model-based perspective
on statistical inference.

The design-based approach to survey inference (e.g. Hansen, Hur-
witz and Madow 1953, Kish 1965, Cochran 1977) has the following main
features. For a population with & units, let ¥ = (y,,.. ., yn) where y,
is the set of survey variables for unit ¢, and let 7 = (1. ., ,dn) denote
the set of inclusion indicator veriables, where I; = 1 if unit ¢ is included
in the sample and I; = 0 if it is not included. Design-based inference
for a finite population quantity @ = Q(Y) involves the choice of an
estimator § = d(Yine, 1), a function of the observed part Yipe of ¥,
that is unbiased or approximately unbiased for @ with respect to the
distribution I; and the choice of a variance estimator § = 9(Yipe, 7)
that is unbiased or approximately unbiased for the variance of § with
respect to the distribution of I Inferences are then generally based on
normal large sample approximations. For example, a 95% confidence
interval for Q is § + 1.96v/%.

The model-based approach to inference bases inference on the dis-
tribution of ¥, and usually does not, overtly consider a distribution for
I; while assumptions of randomization lurk in the background, they
are not the basis for the inference. The model for the survey ontcomes
Y is used to predict the non-sampled values of the population, and
hence finite population quantities (2. There are two major variants : sy-
perpopulation modelling and Bayesian modelling. In superpopulation
modelling (e.g. Royall 1970; T hompson 1988; Valliant, Dorfman and
Royall 2000}, the population valies of ¥ are assumed to be a random
sample from a “superpopulation”, and assigned a probability distribu-
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tion p(}" | 6) indexed by fixed parameters . Bayesian survey inference
(Ericson 1969, 1988; Basu 1971; Scott 1977; Binder 1982; Rubin 1983,
1987; Ghosh and Meeden 1997, Little 2004) requires the specification of
a prior distribution p{¥"} for the population values. Inferences for finite
population quantities Q(Y") are then based on the posterior predictive
distribution p(Yexc | Yjp) of the non-sampled values (say Yexe) of Y,
given the sampled values ¥j,,.. The specification of the prior distribu-
tion p(Y’) is often achieved via a parametric model p(Y | 6) indexed by
parameters ¢, combined with a prior distribution p(#) for 8, that is :

p(Y) = / p(¥' | 8)p(6)ds

The posterior predictive distribution of Yexc is then

P(}excl mc / (}EXCI ince )p(ﬁ] 111(;)

where p(# | ¥j,c) is the posterior distribution of the parameters, com-
puted via Bayes’ Theorem :

p(ef 1nc) p(B)P( ine | 6)/30( 11'1(3)

where p(f) is the prior distribution, p(Yj,. | 8} is the likelihood func-
tion, viewed as a function of 8, and p(¥j; .} is a normalizing constant.
This posterior distribution induces a posterior distribution 2(Q | Yine)
for finite population quantities Q{¥).

The specification of p(¥ | ) in this Ba.yesian formuiation is the
same as in parametric superpopulation modellmg, and in large samp[es
the likelihood based on this distribution dommates the contribution
from the prior for . As a result, la,rge—sample inferences from the su-
perpopulation _rnodelimg and Bayesian approaches are often similar.

Example 2.1 Estimating a Mean from a Stratified Sample

Consider the simple case of estimation of a finite population mean
Y from a stratified random sample. Suppose the population is divided
into J strata, and let N; be the known population count in stratum j

and Y the unknown population mean in stratum j. The quanttty of
J

interest Q=Y = ZP] Y;, where P; = N;/N is the proportion of
i=1 ' '
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the population in stratum 7. We assume that a random sample of size
nj of the V; units are sampled in stratum j, and let {yji=1,.. -7y}
denote the set of sampled Y-values in stratum J- Then Y. = Wi, J =
L., Jie=1,..., n;}. Stratified random sampling i5 defined by :

Nj

5

-1 N_-; -
Pr(l; = 1) = [( )] , if Zfﬁ = nj, and 0 otherwise .
o i1

The usual estimator of ¥ in this s'etting is the stratified mean

J J ‘ J
(=Tst =) Py, = > oniGimy |/ Do/ |, (2.1)
i=1 =1 /  \i=t

where ¥; is the sample mean in stratum j. The estimator (2.1) is the
weighted mean of the sampled units, where units in stratum 7 are
weighted by the inverse of their selection probability T =mn;/N;.

Consider now a model-based approach. Suppose we assume the
model

Ysi ~ind Nor (Mr 0‘2/“;}') (22)

where Nor (g, b} denotes the normal distribution with mean a, variance
b,u; is known, and the non-informative prior distribution

p(p,loga?) = const. (2.3) -

The posterior mean of the population total is

J

J
Uy = anujgjj / anuj , (2.4)
=1

j=1

which weights cases in stratum j by uj, rather than 1 /7.

The application of design weights in this example is not controver-
sial, and the stratified mean is difficult to beat as an estimator except
in unusual situations. Indeed, the model-based estimator (2.4) is not
recommended, since it ig vulnerable to the assumption that the stra-
tum means are equal. If the model {22) - (2.3) is changed to allow a
separate mean in each stratum :
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Yii ~ind Nor (‘U,J,O")'/uj) (25)

p(pj,logaz) = const. , (2.6)

the posterior mean is then the stratified mean (2.1), so the design and
model-based estimates correspond. Usually allowing a separate mean in
each stratum is sensible, since strata are generally chosen to be related
to survey outcomes; we do not determine strata by the toss of a coin.

In other settings, the design-weighted Horvitz-Thompson estimator
(Horvitz and Thompson 1952) can lead to nonsensical estimates. Basu
(1971) gave the following famous and amusing example :

Example 2.2 Basu’s Elephants.

“The circus owner is planning to ship his 50 adult elephants and
s0 he needs a rough estimate of the total weight of the elephants. As
weighing an elephant is a cumbersome process, the owner wants to
estimate the total weight by weighing just one elephant. Which ele-
phant should he weigh? So the owner looks back on his records and
discovers a list of the elephants’ weights taken 3 years ago. He finds
that 3 years ago Sambo the middle-sized elephant was the average (in
weight) elephant in his herd. He checks with the elephant trainer who
reassures him (the owner) that Sambo may still be considered to be
the average elephant in the herd. Therefore, the owner plans to weigh
Sambo and take 50y (where y is the present weight of Sambo) as an
estimate of the total weight ¥ = ¥; 4+ Y3 + ... Yzg of the 50 elephants.
But the circus statistician is horrified when he learns of the owner’s
purposive sampling plan. “How can you get an unbiased estimate of
Y this way?” protests the statistician. So, together they work out a
compromise sampling plan. With the help of a table of random num-
bers they devise a plan that allots a selection probability of 99/100 to
Sambo and equal selection probabilities of 1/4900 to each of the other
49 elephants. . Naturally; Sambo is selected and the owner is happy.
“How are you going to estimate Y7, asks the statistician. “Why?
The estimate ought to be 50y of course,” says the owner. “Oh! No!
That cannot possibly be right,” says the:statistician, “I recently read
an article in the Annals of Mathematical Statistics where it is proved
that the Horvitz-Thompson estimator is the unique hyperadmissible
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estimator in the class of all generalized polynomial unbiased estima-
tors. “What is the Horvitz-Thompson estimate in this case? asks the
owner, duly impressed. “Since the selection probability for Sambo in
our plan was 99/100,” says the statistician, “the proper estimate of ¥
is 100y/99 and not 50y.” “And, how would you have estimated ¥,”
inquires the incredulous owner, “if our sampling plan made us select,
say, the big elephant Jumbo?” “According to what I understand of the
Horvitz-Thompson estimation method,” says the unhappy statistician,
“the proper estimate of ¥ would then have been 4900y, where y 18
Jumbo’s weight.” That is how the statistician lost his circus job (and
perhaps became a teacher of statistics!)”

Design-based statisticians groan when modelers bring up Basu’s
example, since they view it as a caricature : no sensible design-based
statistician would use the HT estimator in this case. Basu was using
the example to make a theoretical point; the HT estimator has the
useful property of design-unbiasedness in large samples, but no single
estimator is optimal in all situations, and weighted estimators can do
very badly, particularly in small samples. As a more realistic example,

design-based statisticians deviate from strict weighting when outlying -

observations receive large weights, and dominate the estimator.

Slavish adoption of the design-weighted estimator without attention
to whether the underlying model is reasonable is not wise. How can
we tell when the HT estimator is not going to work? One approach
is to consider the model for the population implied model by weight-
ing. Specifically, consider creating an estimate of the population by
replicating sample observation ¢ 1/7; times. Is the resulting population
sensible as an approximation for the problem at hand? Clearly the
answer is “yes” in Example 2.1, and “no” in Example 2.2. When the
answer is no, better estimates exist.

The population that replicates the sample is a kind of model, and
design-based statisticians cannot avoid models. On the other hand,
model-based statisticians cannot avoid weights, since a model that ig-
nores the survey weights is likely to be poorly calibrated, given the real-
ities of model misspecification as exemplified by the absence of stratum
means in (2). For other examples, see Kish & Frankel (1974), Hansen,
Madow & Tepping (1983), Holt, Smith, and Winter (1980), and Pfef-
fermann and Holmes (1985).

My own philosophy of survey sampling inference, as for statistics in

general, is calibrated Bayes, where inferences are Bayesian and based
on models for ¥, but models need to be calibrated in the sense of having
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good design-based properties in repeated sampling from the distribu-
tion of I (Box 1980, Rubin 1984, Little 2006). The calibrated Bayes phi-
losophy leads to prediction models with relatively noninformative prior
distributions, which incorporate design features appropriately, seeking
both efficiency and robustness to modet misspecification. My work in
this area has been guided by this underlying principle.

For calibrated Bayesians, both the distribution of ¥ and the dis-
tribution of I are important — indeed a useful and unifying conceptual
device is to formulate the model in terms of the joint distribution of
both ¥ and I. The early literature of surveys focused either on the
distribution of ¥ or the distribution of I , rather than the joint distri-
bution of ¥ and 7. This tended to lead to compartmentalization into
design-based and model-based advocates. To my knowiedge, the first
person to explicitly model I and ¥ seems to be Rubin (1978), in a
paper that was more focused on estimating treatment effects but also
modelled the selection mechanism. i

The joint modelling of ¥ and I' in the survey context is well de-
scribed in the book by Gelman et al. (2003). The following description
is from Little (2003a). The model can be formulated as -

P(yU,iU | ZU795¢') :p(yU |.ZU16) Xp(iU I 3U?yU7¢’)1

where U/ denotes universe as opposed to sample, ¥y denotes the survey
data, iy the sample inclusion indicators, 2y denotes design variables,
such as strata indicators, and 6, ¢ are unknown parameters. The like-
lihood of 8, ¢ based on the observed data (2, Y, i) is then :

L(B'nqb { z, ?Jinc,iU) o p(yinc;iU | 2, 9: (f)) = -fp{yU:iU I Z[7, 9) ¢)dy€xc

The more usual likelihood does not include the inclusion indicators i
as part of the model. Speciﬁca[ly, the likelihood ignoring the selection
process is based on the model for yy alone :

L0 | 20, Yinc) o< plyine | 20,6) = ] D | 20:6)dgose.

Applying Rubin’s (1976) theory, sufficient conditions for ignoring the
selection mechanism are : :
Selection at Random (SAR) : pliv | zu,yu, @) = pliv | ztr, Vine, &)
for all yepe.
Distinctness : @, ¢ have distinet parameter spaces.
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Probhability sample designs are generally both ignorable and known,
in the sense that :

pliv | zu, yu. ¢} = pliv | zv, Yine)s

where zy represents known sample design information, such as clus-
tering or stratification information. Thus the sampling mechanism can
be ignored, provided the sample design information in zy is included
in the model. ‘In the case of weighting, this means conditioning on the
design variables that lead to differential weights. This analysis also pro-
vides a justification for randomization in design, since other forms of
sampling, like quota sampling or purposive selection, do not necessarily
satisfy the SAR assumption. Extensions to handle survey nonresponse
“are given in Little (1982, 2003b}.
The sampling weights in Examples 2.1 and 2.2 are determined solely
by the probabilitics of sclection. More generally, survey weights also in- .
volve components for survey nonresponse and for post-stratification to
match known population distributions. The standard approach creates
- a composite weight for unit ¢ of the form

Wi X Wig X 'w-in(_'wis) X wip(w-is: win) i (27)

where 1w, is the sampling weight, w;,(w;,) is a nonresponse weight- -
ing factor and wip,(wis, win) is a post-stratification adjustment. In
the remainder of this article T'll give some additional illustrations of
prediction models that features like selection probabilities and survey
nonresponse.

3. WEIGHTS THAT INCORPORATE POPULATION INFORMATION

In Example 2.1 we noted that the weighting and prediction ap-
proaches yield the stratified mean in the case of the stratified example.
Post-stratification is a closely related example : -
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Example 3.1 Inference for the Mean with Categorical Post-
Strata.

Another situation where the design and model-based approaches
intersect is estimation of the population mean of a variable ¥ from
a simple random sample, given a categorical post-stratum variable Z
with known distribution in the population. Let y;; denote the value
of ¥ for sampled unit ¢ in post-stratum Z — J- Assume the model of
Equations (2.5) - (2.6). The posterior distribution of the population
mean has mean

: J . J J
Umod =Twt = ) FiJ; = > winy 7/ winy, (3.1)
=1 j=1

i=1

where in post-stratum 2 = 7, P; is the population proportion, n;, is the
sample size, ¥, is the sample mean, and w; = n Fj/n;. The estimate
(3.1) is the post-stratified mean, also obtained in the design-based ap-
proach by applying post-stratification weights w; to the sampled units
in post-stratum j. _
' Asymptotically (3.1) works fine, but in small samples it is unsta-
ble. The situation here differs from stratification on Z, where the stra-
tum counts {n;} are under the control of the sampler. With post-
stratification, the {n;} are determined by which units happen to fall
into post-stratum j. The post-stratum counts n; in one or more post-
strata may become very small, yielding large weights wy; indeed (3.1} is
not defined if for any j, nj = 0, and it does not have a well-defined sam-
pling distribution in repeated sarmples unless {n;} are constrained to he
positive; for discussion of this point see Holt and Smith (1979) and Lit-
tle (1993). Design-based approaches modify the weights, for example
by pooling small post-strata. However, from a prediction perspective,
the problem lies not in the weigtlts, but in the unstable predictions 7, of
the means in post-strata with sinall counts. The associated proportions
F; are, after all, known!

 From a Bayesian perspective, the posterior distribution of ¥ for
the model (2.5) - (2.6) is a mixture of ¢ distributions, and as such
Incorporates ¢ corrections from estimating the variance that are not
available under the design-based approach, which is basically asymp-
totic. Concerning the instability of (3.1}, the Bayesian solution is to
modify the prior distribution (2.6) to allow borrowing of strength across
post-strata. One such modification is
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1 ~ind N (177) . p (u,loga®, 7%} = const.,

which yields predictions that effectively shrink the weights w; to a con-
stant. This approach to weight shrinkage is discussed in Little (1993),
and extensions in the presence of covariates are discussed in Lazzeroni
and Little (1998) and Elliott and Little {2000).

Example 3.2 Categorical Strata and Post-Strata.

Suppose now that we ha\je a stratified sample, with stratifier Z,
with population distribution {P;,7 = 1,...,J}, and we also know
the population distribution {FPs,k = 1,..., K} of a post-stratification
variable Z. The traditional weighting approach (2.7) is to post-stratify
the stratification weights so that the weighted sample counts match the
population distribution of Z,. That is, the composite weight for units
in stratum j, post-stratum k is ' '

Wi = wl_., X Wag.j,

where wi; = nPj/ni; and wr; = nPywy;/ 3, wiy. Interestingly,
these weights lead to stratumn counts that do not match the population
distribution of -Z;. From a modelling perspective, the data about the
joint distribution of Z; and Z, consists of the sample counts {n;;} and
the known marginal distributions of Z, and Z5. A saturated model for
the joint distribution of ¥, Z; and Z- takes the form :

{njx} ~ MNOM (n, Pj.);

Y1 ~ Nor (p.jk,ofk),p(pjk,logafk) = const. (3.2)

Maximum tikelihood estimates { Py} of {P;;} are obtained by ranking
the sample counts to match the Z; and Z; margins by iterative propot-
tional fitting, yielding weights that match both of these margins. The
maximum likelihood estimate of the population mean of ¥ is then

J K

Ymad = 2,0 Ll (3-3)

J=1k=1

Classification by both Z; and 7, increases the likelihood of small eounts
{njk} in some cells, so modifications of (3.2) for predicting the cell
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means may be important. One possibility is to replace the saturated
model by

Yini ~ Nor (p+aj + B + ’ijﬂ?k) ?

k=1

J K
D aj = Bi=0,7%~ Nor (0,7) (3-4)
j=1 '

which results in shrinkage of the sample mean 7;, towards the fitted
mean for the additive model relating ¥ to Z; and Z;. In summary,
adopting a prediction perspective {(a) corrects the usual estimator to
match both stratum and post-stratum margins; (b) provides ¢ correc-
tions for estimating the variance, as in Example 3.1; and (c¢) allows
modifications of the estimator (3.3) in small samples by modifying the
prior distribution of the cell means.

Example 3.3 Probability Proportional to Size (PPS) Sam-
pling. -

The weights in Examples 3.1 and 3.2 incorporate information from
categarical variables in the population. Sometimes sample designs in-
volve stratifiers that are continuous variables. A common design with
a continuous stratifier is PPS sampling, where units are selected with
probability proportional to a size variable Z known for all units in the
population. The standard design-based estimator in this setting is the
HT estimator

Twi = % (Z yt-/m) (3.5)

where 7; is the probability of selection for unit 7. From a modelling
perspective, the objective is to base estimates on predictions from a
regression model for the distribution of ¥ given Z. The estimator (3.1)
is approximately the prediction estimator for the “HT model”

yi } zi ~ Nor (Bz,0%2}). (3.6)

The estimator (3.1) tends to be efficient when the HT is satisfied, but
does poorly when this model is seriously viclated. Zheng and Little
(2003, 2004, 2005) consider predicting the non-sampled values using
the more flexible penalized spline model
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Yi ~ Nor (f{zi:ﬁ)aaz_zik}’

where f is a spline function :

P X ™
f{z:,8) =ﬁ0+Z/@j Zf +Zﬁz+p (2 Aﬁ:g)i,’i =1,...,N.
i=1 =1

Here k > 0 is a constant reflecting the knowledge of the error vari-
ance and the constants 1 < ... < &, are selected fixed knots, and
(w)f = uP if u > 0, and 0, otherwise; and(fp11 ..., Bprm)” are as-
sumed Nor(0, 7°1,,). This model relaxes the assumption that the rela-
“tionship between Y and Z is linear. Zheng and Little (2005) show by
simulation that prediction inferences based on this model yield gains
over the HT estimator in both efficiency and confidence coverage when
the HT model (3.6) is violated, while sacrificing little in terms of effi-
ciency when the HT model is satisfied. Chen, Elliott and Little (2009)
develop Bayesian inference for a population proportion from unequal
probability samples, where the probit of the probability that y; = 1 is
modelled as penalized spline of the size variable. They also show gains
in terms of efficiency and confidence coverage compared with the HT
estimator, and generalized regression extensions of the HT estimator.

4, UnNiT AND ITEM NONRESPONSE

In the context of survey nonresponse, weighting adjustments are
common in the case of unit nonresponse, as in the following example:

Example 4.1 Unit Nonresponse in Surveys

Suppose that respondents and nonrespondents are classified into ¢
adjustment cells based on covariates X observed for both. The nonre-
sponse weight in cell ¢ is then the inverse of the estimated response rate
in that cell. This is also the prediction estimator for a model that as-
sumes a different mean for the outcome in eacl: adjustment cell. Some
comments on this approach follow :

1. Given extensive covariate information, adjustment cells should
be chosen that are predictive of both the survey outcomes and




160 Calcutta Statistical Association Bulletin

of nonresponse. Adjustment cell weighting, and extensions based
on models for the propensity to respond, tend to focus on good
predictors of response, but Little and Vartivarian {2005) argue
that having a good predictor of the outcome is more important;
these can actually improve efficiency of estimation, and good pre-
dictors of nonresponse that are ot related to the outcome simply
increase variance without reducing bias.

2. When the sampling weights are not constant within adjustment
cells, it is common practice to compute the nonresponse weight as
the inverse of the weighted response rate, where units are included
in the rate weighted by their sampling weights. This “weight
squared” approach does not correct for bias when the cutcome
is related both to the adjustment cell variable and the stratifi-
cation variable, as is demonsirated by simulations in Little and
Vartivarian (2003}

3. Since nonresponse is not under the control of the sampler, highly
variable nonresponse weights are possible, as when the fraction of
respondents in an adjustment cell is small. Thus shrinkage of the
nonresponse weights may be attractive, and this is accomplished
by putting a proper prior on the adjustment cell means, as was
done in Example 3.1 in the case of post-stratification.

Example 4.2 Item Nonresponse in Surveys.

Item nonresponse occurs when particular items in the survey are
missing, because they were missed by the interview, or the respon-
dent declined to answer particular questions. For item NONresponse
the pattern of missing values is general complex and multivariate, and
substantial covariate information is available to predict the missing val-,
ues in the form of observed ifems. These characteristics make weight.-
ing adjustments unattractive, since weighting methods are difficult to
generalize to general patterns of missing data {Little 1988) and make
limited use of information in the incomplete cases.

A common practical approach to item missing data is imputation,
where missing values are filled in by estimates and the resulting data are
analyzed by complete-data methods. In this approach incomplete cases
are retained in the analysis. Imputation methods until the late 1970’s
lacked an underlying theoretical rationale. Pragmatic estimates of the
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missing values were substituted, such as unconditional or conditional
means, and inferences based on the filled-in data. A serious defect with
the method is that it “invents data”. More specifically, a single imputed
value cannot represent all of the uncertainty about which value to im-
pute, so analysis that treat imputed values just like observed values
generally underestimate uncertainty, even if nonresponse is modelled
correctly. Rubin’s (1987) theory of multiple imputation (MI) put im-
putation on a firm theoretical footmg,, and also provided simple ways
of incorporating imputation uncertamty into the inference. Instead of
imputing a single set of draws for the missing values, a set of @ (say
@) = 10) datasets are created, each containing different sets of draws of
the missing values from their predictive distribution given the observed
data. The a‘na}ysis ol interest is then applied to each of the () datasets
and results are combined using sirple multiple imputation combining
rules (Rubin 1987; Little and Rubin, 2002). An alternative to multiple
imputation is to use sample re-use methods that reimpute the data on
each replicate sample (Rao 1996).

5. CONCLUSION

The above examples suggest that weighting provides a useful all-
purpose approach to large sample estimation in surveys, but Bayesian
predictive models yield useful extensions and refinements, provided
careful attention is paid to incorporating the survey design. Some ad-
vantages of the Bayesian approach are :

(1) Tt provides a unified approach to survey inference, aligned with
mainline statistics approaches in other application areas such as
econormetrics.

(2) In large samples and with uninformative prior distributions, re-
sults can parallel those from design-based inference, as we have
seen in the case of stratified and post-stratified sampling in Ex-
amples 1.1 and 2.1.

(3) The Bayesian approach is well equipped to handle conmplex de-
sign features such as clustering through random cluster models
(Scott and Smith 1969), stratification through covariates that dis-
tinguish strata, nonresponse (Little 1982; Rubin 1987; Little and
Rubin 2002} and response errors.
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{4) The Bayesian approach may yield better inferences for small sam-
ple problems where exact frequentist solutions are not available,
by propagating error in estimating parameters. For example, the
posterior distribution of the mean for inference from normal strat-
ified samples in Example 2.1 is a mixture of ¢ distributions that
propagates uncertainty in estimating the stratum variances. On
the other hand, the standard design-based inference based on the
normal distribution assumes that the stratum variances are esti-
mated without error from the sample.

(5) The Bayesian approach allows prior information to be incorpo-
rated, when appropriate; and

(6) Likelihood-based dpproaches like Bayes or maximuin likelihood
have the property of large-sample efficiency, and hence match
or outperform design-based inferences if the mode! is correctly
specified.

An alternative to a direct Bayesian modelling approach for incor-
porating auxiliary information is model-assisted estimation, where a
model is applied to predict the non-sampled values, and then the pre-
dictions are calibrated by applying the HT estimator to the residuals
from that model (Sirndal, Swensson and Wretman 1992). Specifically,
the generalized regression estimator of T takes the form :

.
Tor =S i+ p, Wi—@)m (5.1)

=k i sampled

where §; is the prediction from a linear regression model relating Y
to the covariates. While this approach is popular and yields design-
consistent (Tsaki and Fuller 1982) estimates, my personal preference is
to choose robust models that’yield design-consistent estimates, that is,
to correct the model rather than to correct the estimator. It is relatively
easy to find models that yield design consistent estimates {e.g. Firth
and Bennett (1998), and there is little evidence that calibration yield
better inferences than direct model estimates when tlie latter are design
consistent. '

A criticism of the model-based approach is that it is impractical for
large-scale survey organizations : the work in developing strong models,
and the computational complexity of fitting them, is not suited to the
demands of “production-oriented” survey analysis. However, attention
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to models is needed in model-assisted approaches, even when the ba-
sis for inference is the sample design. Also, complutational power has
expanded dramatically since the days of early model versus randomiza-
tion debates, and much can be accomplished using software for mixed

models in the major statistical packdge_s (SAS 1992; Pinheiro and Bates.

2000) or Bayesian software based on MCMC methods such as BUGS.
(Spiegelhalter, Thomas, and Best 1999). Bayesian software targeted
at complex survey problems wouldincrease the utility of this approach
for practitioners. Also, guidance on “6%-the-shelf” models for routine
application to standard sample designs would be useful, although no
statistical procedure, design or model-based, should be applied blindly
without any attention to diagnostics of fit to the data.
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DISCUSSION
ANDREW GELMAN
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and Department of Political Science,
Columbia University, USA

Survey weights, like sausage and legislation, are best appreciated
by those who are placed a respectable distance from their manufac-
ture. For those of us working inside the factory, vigorous discussion of
methods is welcome. I enjoyed Rod Little’s review of the connections
between modeling and survey weighting and have just a few comments.

I like Little’s discussion of model-based shrinkage of post-stratum
averages, which, as he notes, can be seen to correspond to shrinkage of
weights. I would only add one thing to his formula at the end of his
Example 3, which is that his regression model can include postsiratum-
level predictors; for example, if poststrata are indexed by sex, age,
ethnicity, and education, the model could include indicators for each of
these factors, and even two-way effects as necessary. This seems to be
where he is leading in his Example 4. _

I also found Little’s discussion of probability praportional to size
(pps) sampling helpful; this is a problem that I have found difficult to
attack using model-based methods. The spline model for the response
given stratum size seems like a good way to go. My only comment
here 1s that I have always associated pps sampling with two-stage clus-
ter sampliﬁg, in which clusters are sampled pps and then a fixed-size
sample is drawn from each cluster. In this case, the classical pps unit
weights are all equal, and it is hard for me to believe that a model-based
approach can improve much upon this, at least in settings in which the
measures of size used in the sampling are not far from the actual sizes
of the clusters. s -

As Little emphasizes, weiéhts and other survey adjustment proce-
dures are intended to correct for known differences between sample and
population. I would rephrase his claim that “model-based statisticians
cannot avoid weights”, and instead say that statisticians cannot avoid
adjustment, but this adjustment could take other forms, such as my
personal favorite of model-based poststratification (Gelman and T. C.
Little, 1997, Gelman, 2007).

Don Rubin once told me he would prefer to do all survey adjustment
using multiple imputation; for example, in a survey of 1000 American
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adults, he would impute the missing responses for the other 250 million.
I asked him if that was impractical, and he replied that the imputa-
tion could only realistically be performed conditional on information
. available on all 250 million; i.e. Census demographics, and thus the
imputation would in fact be equivalent to fitting a regression model
of the response conditional on key demographic variables recorded in
the survey and then summing over Census numbers to get national
estimates. Depending on the method used to estimate the regression,
it might be possible to approximate-such an estimate as a weighted
average over the sample (Little, 1993, Gelman, 2006) but it would be
stretching it to call this a use of weights. In addition, under this ap-
proach, the approximate weights depend on the fitted model and thus
on the outcome being modeled. Having a different weight for each ques-
- tion on the survey would seem to go beyond the usual conception of
survey weighting.

Even in the design-based world, survey weights are not always based
on selection probabilities. Consider the following poststratification ex-
ample : A national survey of American adults is conducted and yields
600 female respondents and 400 males. The standard poststratified es-
timate is to take 0.52 times the average response for the women plus
(.48 times the average for the men, which corresponds to unit weights
of 0.52/0.60 for each woman and 0.48/0.40 for each man. These are
not inverse selection probabilities but rather are based on the known
proportions of men and women in the sample and population. The
weights are not even estimated inverse selection probabilities, a fact
which we can see by noting that, even the actual selection probabilities
were given to us, we would not use them: the poststratification weights
are better. Which is perfectly consistent with the points Little makes
in his article.
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Reading the work of Rod Little is always very challenging and in-
structive, and this article is no exception. On first reading I thought
that I actually agree with everything said, but after a second and more
thorough reading I found some points that are probably worthy further
discussion, which I do below.

Little starts his discussion by raising the question of whether when
fitting regression models to survey data, one should weight by the in-
verse of the variances under the model, or by the inverse of the sample
selection probabilities. The first form of weighting is ‘model-based’;
the second form is ‘design-based’. Little points out that both forms
of weights are “plausible”, but to me they actually represent different
kind of conditioning. Suppose that we consider the population values
Yy = (Y1 ..., ¥~) as being generated from a superpopulation model £
(the regression model in Little’s example). Denote the sampling design
by p = p(I), where I = (I1 ...,In) and I; defines the sample inclusion
indicator. We can now view the sample data as being the outcome of
the two random processes £, and then p. Going back to the regression
example, estimating the regression coefficients under the combined p £

distribution suggests weighting by both the inverse of the model vari-

“ances and by the inverse of the selection probabilities. Assuming non-
informative sampling and conditioning on I suggests weighting by only
the inverse of the variances as the optimal weighting, whereas condi-
tioning on Yy suggests weighting by only the inverse of the selection

“probabilities. When the samplesselection is informative, a third con-
ditioning becomes plausible. Following a result by Pfeffermann and
Sverchkov (1999), weighting by both the inverse of the variances and
the inverse of the sample selection probabilities is the optimal weight-
ing (in a least squares sense) under the conditional distribution of the
sampled y-values, given the selected sample (see also below).

Later on, Little advocates the joint modelling of ¥ and [ as part
of the “calibrated Bayesian approach”, and hence the use of the full
likelihood, L(0,9 | zu, Yine.iv) < [ pliv | zv,yu; O)plyw | zu: 0)dyes.
for inference, where (2, Yine, tv) defines the observed data and yeg.
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the unobserved y-values. I fully agree that this should be the preferred
- likelihood under either the frequentist approach or as part of a Bayesian
model because it encompasses all the design information, when avail-
able, and generally guarantees that the sampling mechanism can be
ignored in the inference process. Unfortunately, the full likelihood is
not always operational in a secondary analysis, because some or all of
the values of the design variables z may not be known, notably for the
nonsampled units. This is usually the case when, for example, the de-
sign variables include a size variable used for PPS sampling {Example
5 in the paper). So, even if p(iy | zv, v qu) = pliv | 2v, Yine: ¢), guar-
anteeing sampling ignorability, the use uf the full likelihood requires
knowledge of zy or an adequate summary of it. When, in addition,
P(Wine | 203 8) = pWine | Zinc; 0), one can estimate &, but knowledge of
the design variables values for the nonsampled units is still required for
predicting the unobserved (excluded) y-values via the predictive model
 PWewe | Zu, Yine). In theory, one could integrate the likelihood or the
predictive model over the joint distribution of the missing design vari-
ables, but when there are many of them, this might not be practical.

In the present article Little restricts to the estimation (prediction)
of finite population totals. Often, however, survey data are used for
the fitting of structural models per se, such as the regression model
mentioned before, and not for estimating population totals. Denoting
the independent variables in the model by =z, the focus of inference is
in this case the model f¢(y | z), and not the model f¢(y | z, z), which
may not even be interpretable. Here again, the sampling mechanism
can be ignored if 2z is included among the model covariates, but fit-
ting the model fe(y { ) requires then integrating the extended model
- fely | =, 2u) with respect to the distribution of zy | &, which could be
formidable.

How can we deal with these problems? One possibility, not the only
one or necessarily the best one, is to consider instead of the full likeli-
hood the conditional sample likelihood, or more generally, to base the
inference on the conditional sample distribution (hereafter, the sam-
ple model). Following Pfeffermann et al. {1998) and Pfeffermann ahd
Sverchkov (1999), the sample model is defined as,

Prii € s |y w:)fe(y: | )
Priics |z

Folwi | =)™ Fly | zavi € ) -
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- Bslwi | &) felyi | )
Es(w; | ya,?i)

(1)

where fe(y; | x;) defines, as before, the ‘superpopulation’ model, w; =
1/Pr{i € s) is the (base) sampling weight and E,(-) is the expec-
tation under the sample model {the model holding for the sample
data). Notice that when Pr{i € s | yi,z;) = Pr(i € s | z;) for all
Yi, fs(yi | 1) = felys | #:). On the other hand, Pr(i € s | y;,2:) is
generally not the same as w; = Pr(i € s), which depends on the design
values zy;. However, the use of the sample model onty requires modelling
Eg{w; | yi,2:), (which is not always trivial in practice), thus avoiding
the need to know all the values of the design variables and incorporate
them in the model. Pfeflermann et al. (1998) establish mild conditions
under which if the outcomes are independent under the population
model, they are also ‘asymptotically independent’ under the sample
model when increasing the population size but holding the sample size
fixed. Pfeffermann and Sverchkov (2003) discuss alternative likelihood-
based approaches of estimating the parameters underlymg the model

(1).

Returning to the issue of different forms of weightiug when fitting
regression models, the use of the sample model suggests a third set
of weights. Let the regression model be y; = 28 + &1, Ee(e:) =
0,Vare(e;) = o2, Feleiej) = 0 for i # j. Under this model, § =

(gi=ciff)®
B (wilzi)o?

arg min Eg[(y;—zrﬁ]]mz]z = arg min Eyfw; |z;]. Estimating
the external expectation in the right hand side by the correspoading
sample mean yields the estimator f; = Y2, giziz}/0?] ™" ¥, Gizivi/ o7,
where g; = w;/Es(w; | z;). The weights {g;} account for the net sam-
pling effects on the conditional target model fe(y; | 2;), and the estima-
tor ﬁq is therefore less variable than the probability weighted estima-
tor By = (> e, wikszi/of]” -1 > ics Wisyi/oF, which uses the sampling
welghts w;. As noted before, the estimator ﬁﬁ'w is obtained as the-optimal
estimator in the least square sense when dropping the condltlomng on
x; in the definition of F. A8 with [J’w, under mild conditions Bq is design
consistent for the census vector B = [Za L Tpay fod] ! Ek Azryr/op).

How can the sample model be used for predicting finite popula-
tion means? For this, one needs to use the sample—compiement model
defined as,
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Pr(i ¢ s | yi,zi) fe(yi | i)
 Prii¢s|z)

Eyl(wi — 1) | ps, il f5 (i | 23)
B [(w; — 1) | z)

Felyi | -'rz) = (yz | 2,0 ¢ 3)

» (2)

with the second equality shown in Sverchkov and Pleffermann (2004).
Note that the sample-complement model is again a function of the
sample model and the expectation E,(w; | yi, =), and thus-can be esti-
mated from the sample data. The optimal predictor of the population
total under a quadratic loss function is now,

T=STy+Y B ligs)=) wi+y Eelyilz)

i€s jés i€s ifs

— Z v+ Z E(u’J *}y:r ] :cj] (3)

ics [(w; —1) Ly}

The last equality follows from (2), with the sample expectations in the
numerator and the denominator either being modelled based on the
sample data or simply estimated by the corresponding sample means.
As shown in Sverchkov and Pfeffermann (2004), familiar estimators of
finite population means are obtained as special cases of this theory.
For example, consider the case of no covariates (z; = 1). Then, by
BT = s yi + (N = n)E, e ""_1 y;]. Estimating the two sample

expectations by the respective sample means yields the estimator, T =
Yies Ui + 3T EN(w?—l) ZEES(w1 — 1)y;. Interesting enough, using this
estimator in Basu’s elephants example (Example 2 in the present paper)
yields the estimator 50xy where y is the weight of the selected elephant,
and in particular, the estimator 50 X y;amse When jambo is.selected!!
I conclude my discussion by commenting on Little’s strong opin-
ion that “one should choose robust models that yield design-consistent
estimators, that is, to correct the model rather than to correct the es-
timator.” This proposition is not new but I think that one needs to
be cautious in its application. 1 am familiar with the famous saying
that “no model is correct but some are useful”, and I obvicusly agree
that one should try using robust models, but the question is what is
meant by a ‘corrected’ model, keeping in mind that the randomization
distribution under which the predictor is expected to be consistent does
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not constitute an alternative plausible model. If the idea is to use a
less stringent model, for example, allowing for different expectations in
different strata instead of assuming a common expectation, or assurme
a polynomial expectation with an intercept instead of a simple regres-
sion through the origin, such that the extended model is basically still
correct, then I can see the merit of this approach. But if correcting
the model implies, for example, changing the distribution of the error
terms, then I start worrying because other than predicting the pop-
ulation quantity of interest, one has to produce also an estimator for
the variance, and possibly also set up a confidence interval (credibil-
ity interval under the Bayesian approach). T presume that these are
supposed to be computed under the corrected model as well. Are we
guaranteed that they are sufficiently accurate under this model? Do we
need to robustify them separately? I hope that Little can shed some
more light on this issue in his rejoinder, if there is one.

Let me finish with what I started. I truly enjoyed reading this
article and I hope that it will generate further discussion and possibly
new research on this very important topic.
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DISCUSSION
J.N. K. RAO ’
Department of Mathematics and Statistics
Carleton University, Ottawe, Canada

It is a great pleasure to discuss this thought-provoking paper by R.
J. Little (henceforth RJL) on inferential issues in sample surveys. RJL
has made seminal contributions to missing data problems and his Wiley
book with Don Rubin on this topic is' widely used. More recently, RJL
has been working on the role of survey design weights from a model-
based Bayesian perspective and coming up with impressive solutions
to practical problems. This paper illustrates his approach through a
series of practically relevant examples. I will attempt to provide some
comments based on my own views on inference from survey data.

It is indeed very nice of RJL to recognize the seminal contributions
of some Indian samplers. I would like to add to this partial list the
following names: P. V. Sukhatme, G. R. Seth and R. D. Narain from
the Indian Agricultural Research Statistics Institute (IARSI) and D. B.
Lahiri, M. N. Murthy and Des Raj from the Indian Statistical Institute
(IST). Narain {1951) developed designs with inclusion probabilities ;
proportional to size measures z; that are approximately proportional
to the values y; of a variable of interest and independently proposed the
now well-known Horvitz-Thompson (HT) estimator of the total ¥ based
on the design weights d; = n7' (Horvitz and Thompson 1952) for this
particular design. Unfortunately, Narain’s paper has been overlooked

outside India and I have earlier suggested calling this estimator as NHT.

(Rao 1999) to also recognize the seminal 1951 paper of Narain.

In his discussion of Hansen et al (1983), RJL classified survey sam-
plers as D, E or I according to whether models are used in design,
estimation or inference. In their response, Hansen et al noted that the
class D is essentially a null set and that no serious practicing sampling
statistician belongs in class ID. As noted by them, most of the samplers
advocating design-based inference are DE miodelers, either implicitly or
explicitly, taking account of practical cohsiderations, and they make re-
peated sampling inferences in the spirit of Neyman (1934), in particutar
for variance estimation and confidence intervals for large samples based
on the normal approximation. The currently popular model-assisted
approach to inference uses explicit “working” models for the choice of
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efficient design-consistent estimators and then the repeated sampling -
set up for asymptotically valid inferences regardless of the validity of
the assumed working model. On the other hand, RJL seems to be a DEI
modeler and likes parametric Bayesian inferences based on models that
are possibly calibrated in the sense of having good design-based proper-
ties in repeating sampling under the specified design. RJL gives several
examples assuming normality to illustrate his ideas but it is not clear
to me how one ensures that the posterior inferences are well calibrated
in complex situations without explicitly introducing the design effect
associated with the estimator, in particular the joint inclusion probabil-
ities m;;. Formal asymptotic design-based properties for the proposed
posterior inferences are not provided to validate the claims, although
some simulation studies with cleverly constructed re-sampling variance
estimators seem to perform well in repeated sampling under a probabil-
ity proportional to size (PPS) single stage design with small sampling
fraction (Zheng and Little 2005). Proposed methods will be attractive
to users if they indeed lead to more efficient design-valid large sample
inferences than customary design-based methods, say those based on
the model-assisted approach. For small samples, RJL claims that he

- can provide exact Bayesian credible intervals condltlona_l on the data,

but-such inferences may be sensitive to distributibnal assumptions and
possibly to the choice of prior.

RJL proposes. to handle the problem.of sample selectlon bias in
model-based inference by including all the design variables among the
predictor variables in the model. However, this goal may not be of
easy to achieve in practice because not all design variables used in the
sample selection may be known or accessible to.the user. As noted by .
Pfeffermann and Sverchkov (2007), adding the survey weights to the
model as surrogates for the design variables may not summarize the
design variables adequately and also not operational if the weights are
not available for the non- sampled units. Further, the analyst may be
interested in making inferences on model parameters of a specified pop-
ulation model, such as regression parameters. In this case, the param-

eters of the expanded model that includes the design variables may not

be interest to the analyst. On the other hand, demgn-based approach
can be applied in a routine manner for inference on the parameters of
the original model that is of interest to the analyst._

Godambe’s (1955) famous result that the best estimator of the pOp-

ulation mean in a general class of design-unbiased estimators does not
-exist attracted a lot of attention from theoreticians and also created
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the misconception that samplers insist on design unbiasedness. For
example, Basu (1971} commented that “surveyors got mixed up with
the idea of unequal probability sampling” to make the estimator based
on the mean of ratios y;/z; look good by eliminating its design bias.
On the contrary, design unbiased estimation is not insisted upon in
practice because it “often results in much larger MSE than necessary”
(Hansen et al, 1983). Instead, design consistency is deemed necessary
in large samples and attention is paid to reducing the MSE. Hansen
et al (1983) discuss the role of probability proportional to size (PPS)
sampling in multi-stage cluster sampling and explain why it is widely
used in practice. I am glad that RJL recognizes the importance of de-
sign consistency in large samples for his methods and alse advocates
the use of a calibrated Bayes approach. '

Example 1 (stratified sampling)

This example deals with the estimation of a population mean from

a stratified random sample. RJL first considered the normal model {2)
with a common méan to show that the posterior mean does not reduce
to the design-consistent stratified mean. But it appears to-me. that
this example is not appropriate becanse model (2) does not hold for
the sample under the stratified design and hence the posterior mean
under {2} is not valid. RJL then introduced model (5) with separate
strata means and the design is not informative in this case so that the
posterior mean which agrees with the stratified mean is valid. This ex-
ample is fine when there is no auxiliary information. But suppose that
we have an auxiliary variable © observed on all the population units
and the number of strata is large and the sample sizes within strata

~ are small, as in the example of Hansen et al. (1983}. In this case,
the use of models with separate strata parameters (e.g. a ratio model
with different slopes) leads to separate ratio or regression estimators
which are not design consistent unless the within strata sample sizes
are large. On the other hand, a model-assisted approach assuming a
working model with common parameters across strata but using de-
sign weights to make the estimator design consistent leads to widely
used combined ratio or regression estimators {also called GREG esti-
mators) which perform well even with small strata sample sizes as long
as the over all sample size is large (e.g. when the number of strata is
large as in many business surveys). Note that the design is informative
with respect to the working model but still the model-assisted approach
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provides asymptotically valid design inferences. It is possible to con-
struct model-assisted “optimal” combined regression estimators which
are asymptotically more efficient than the GREG estimators and also
lead to more appealing conditional design-based inferences where the
reference set is a set of samples under the design that are relevant to the
sample at hand (see e.g. Rao 1999, section 3.4). The conditiona!l design-
based approach addresses the criticism of modelers that unconditional
design-based inferences are scientifically less relevant than model-based
inferences conditional on the observed sample.

Example 2 (Basu’s circus elephants)

Godambe’s result on the non-existence of best linear unbiased es-
timator prompted some researchers to advance other criteria for the
choice of estimator. One such criterion is admissibility and many pa-
pers on admissibility appeared in prestigious journals, but unfortu-
nately it is not sufficiently selective. As a result, the so-called hyper
admissibility criterion was advanced to show that the NHT estimator is
“optimal” under eny design according to this criterion. This led to the
famous Basu’s circus elephants example in which a- “bad” design with
m; unrelated to y; was constructed to demonstrate the absurdity of the
NHT estirnator under that design which in turn prompted the well-
known Bayesian Dennis Lindley to conclude that this counter example
“destroys frequentist sample survey theory” (Lindley 1996). RIJL is
very fond of citing this example which is discussed in example 2 of the
paper and he says that “Design-based statisticians groan when mod-
elers bring up Basu’s example”. In a 1969 Technical Report of the
Indian Statistical Institute (Rao and Singh 1969) I showed why the
hyper-admissibility criterion, which requires admissibility for all possi-
ble subpopulations (domains) including those with only one member,
makes no practical sense. Esgentially, the NHT estimator is the best
linear unbiased estimator in domains of size one and hence all other
candidates become inadmissible in those domains and thus eliminated
from competition. In practice, we are seldom interested in all subpopu-
lations, and certainly not in subpopulations of size 1. Basu (1971) also
made a similar observation.

I encountered practical situations with =; unrelated to y; long be-
fore Basu (1971) appeared, but my work (Rac 1966) on how to get
around the difficulty with the NHT estimator in such situations has
been overlooked by Basu, RJL and other Bayesian modelers. In my
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1966 paper I showed that the NHT estimator is highly ineflicient when
compared to N when the size measure m; is unrelated to y; and rec-
ommended using N# as the estimator of total in such cases, where 7 is
the un-weighted sample mean. Interestingly, the un-weighted estima- -
tor N7 is also design-unbiased when m; is not related to y;. Scott and
Smith (1968) showed that N is in fact the best estimator in the wider
class of design-model unbiased estimators (that includes NHT estima-
tor and N7), assuming the model used in Rao (1966) that reflects the
knowledge that y; and 7; are unrelated. PPS sampling in multi-purpose
surveys is typically designed to ensure t}fat the size measure is strongly
related to main variables of interest but it is possible that the same
size measure is unrelated or weakly related to some other variables of
interest. For example, in the lowa Farm Survey that led to my 1966
paper, the farm size was strongly related to area under corn but it was
also unrelated to poultry count. The solution I proposed uses varying
weights across variables of interest, but often the user is interested in
using a common weight. The approach of RJL also has a similar limita-
tion. Beaumont (2008) studied this problem and developed a common
smoothed weight under the design-based framework and moderate size
samples, and the resulting estimator performed. well across variables
that are strongly related or moderately related or weakly related to
the size measure. I hope the above comments will convince RJL that
design-based samplers were aware that “no single estimator is optimal
in all situations, and weighted estimators can do very badly ...” long
before Basu (1971) appeared. This is also evident from the-foliowing
observations of Hansen et al (1983) : “Unless reasonably good mea-
sures are available to determine the varying probabilities, substantial
variance increases rather than decreases may result from their use .. ."

Examples 3 and 4 (post-stratification)

RJL notes some difficulties with the standard design-based post-
stratified estimator in the context of simple random sampling. Because
of random sample sizes n; within post strata, the n; in one or more
post-strata may become very small or even zerc when the overall sam-
ple size n is small. This problem can also occur in larger samples if the
number of post-strata is also iarge, as in the cross-classification of two
or more posi-stratification variables. Design-based samplers have ap-
proached the latter problem through calibration only to marginal post-
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strata population counts {Deville and Sarndal 1992); in many practical
situations, only marginal population counts may be accurately known,
from demographic projections of census counts. Moreover, the calibra-
tion approach can handle complex sampling designs, and avoids the
difficulty of searching for suitable design-specific models using the RJL
approach. It is now widely used in the production of official statistics
because it uses a common welght across variables and it ensures calibra-
tion to user-specified population totals of auxiliary variables. However,
it should be noted that calibration estimation is not necessarily model-
assisted and it can lead to poor coverage performance of confidence
intervals even in moderate size samples for highly skewed auxiltary vari-
ables when the model implied by the calibration constraints provides a
poor {it to the data (Rao et al 2003). On the other hand, the model-
assisted approach with a working model that accounts for major model
misspecifications performs well in terms of coverage performance; for
example, when the true model is clearly quadratic in z and the model
implied by the calibration to the population size N and the total of
z is linear. Convergence to normality depends on the skewness of the
residuals from the assumed model and the residuals from the linear
regression remain highly skewed because of the omitted gradratic term
unlike the residuals under the quadratic model.

RJL recommends the use of random effect models to borrow strengthi
across post strata and thus obtain more efficient estimators for post-
strata with small or zero sample counts. Lazzeroni and Liitle (1998)
used such models in the case of ordinal post strata, and conducted a
simulation study to compare the design efficiency of their model-based
estimator to an estimator based on an ad hoc collapsed post-strata
approach. Alternative design-hased estimators are also available (Rao
1985) but not included in this study. Simulation study showed that
modest efficiency gains may be achieved by using the proposed ap-
proach when estimating the population mean. However, it may -not
be easy to formulate a realistic random etfects model in the absence
of auxiliary information about the post-strata; assuming exchangeable
random effects model may not be realistic in such cases because the
post-strata means are known to be not homogeneous. Tn the context of
two-way stratification designs with the total sample size smaller than
the total number of strata, [ have suggested the use of random effects
models when feasible (Rao 1985). -

- Scott and Smith ( 1969) were the first authors to propose random
effect models in the context of two-stage cluster sampling. They ob-
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tained a Bayes predictor of the population mean as a weighted average
of the customary ratie estimator (appropriate under random sampling
‘of the clusters) and the mean of ratios estimator {appropriate under
PPS sampling of the clusters). Bellhouse and Rao (1986) conducted
a simulation study on the efficiency of the Bayes predictor and found
that the gain in efficiency over the customary strategies is minimal if
any. ‘On the other hand, big gains in efficiency can occur by borrowing
strength using random effects models when the parameters of interest
are the clusters (small areas} themselves’or the post strata in the RJL
example. In such cases, traditional design-based approach is ineflicient
or not feasible (as in the case of non-sampled clusters or post strata
with zero sample counts). Small area estimation using random effects
models has attracted a lot of attention in recent years due to growing
demand for reliable small area statistics. Rao {2003) gives a detailed
account of model-based small area methods.

Example 5 (PPS sampling and spline regression)

In example 5 RJL gives a brief account of his important work on
using ‘flexible penalized spline regression models in conjunction with
PPS sampling. The NHT estimator is efficient under the regression
through the origin model (13) with error variance proportional to 2,
called the HT model, but it can perform pootly when this model is se-
riously violated. Spline regression models make minimal assumptions
on the regression function (assuming it accounts for all the relevant
auxiliary variables) and Zheng and Little (2005) showed through sim-
ulations that predictive inferences based on the sptine model perform
hetter than the design inferences using the NHT estimator when the
HT model is violated, while sacrificing little in terms of efficiency when
the HT model holds, even when the prediction estimator may not be
design consistent. It appears that the spline model approach may hold
some promise for practical .applications. In his concluding remarks,
RJL alludes to the possibility of using spline models for “routine ap-
plications to standard sampling designs”, although he warns against
black box type applications. Note that the spline mode! requires the
specification of number of knots and location of the knots in addition
to the choice of predictor variables. . :

Breidt et al {2005) studied model-assisted design inference under
a spline model and stratified random sampling. Their simulation re-
sults indicated that the model-assisted estimator can be congiderably
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more efficient than the prediction estimator under stratified sampling.
A possible reason for the inefficiency of the prediction estimator here
could be that it is not design consistent under the spline model of
Breidt et al while the model-assisted estimator remains design consis-
tent. Hence, it appears that the use of a prediction estimator under
a spline model may require specification of a model that ensures de-
sign consistency. In the Breidt et al simnulation study strata indicators
are not included in the model so that the design is informative. As
noted earlier, model-assisted estimator is design consistent even when
the design is informative with respect to the working model.

Example 6 (unit and item non-response)

Finally, I would like to make a few comments on the seminal work of
RJL on making inference in the presence of unit and item non-response.
RJL makes an important point on adjustment cell weighting under unit
non-response. He notes that the formation of adjustment cells based on
a good predictor of the outcome is more important than using a good
predictor of unit non-response if the latter predictor is not related to
the outcome. A drawback.-of the adjustment based on a predictor of
the outcome is that it leads to varying weights across the variables in
a multi-purpose survey, unlike the adjustment based on a predictor of
unit. non-response. However, adjustment based on predictor of outcome
might be practical if one variable is the most important variable and the
resulting cells are used for all the variables, leading to a common weight

-across variables. In fact, using both the predictor of cutcome and the

predictor of unit non-response could lead to reduced bias and variance
(Smith et -al 2004). Vartivarian and Little (2002} reported favorable

results from cross-classifying on the predictor of non-response and the

predictor of cutcome to form adjustment cells.

Imputation for item non-response has attracted a lot of attention
and RJL advocates the use of Rubin’s multiple imputation {MI) vari-
ance estimator, based on multiple imputed data sets. Although the MI
approach may be atiractive as a “black box” approach to estimation
and analysis of survey data from public-use completed data sets, there
are a number of theoretical difficulties with. this approach especially
in the context of complex survey data involving dependent data struc-
tures or low response rates (see e.g. Fay 1996; Wang and Robins 1998},
some times leading to inefficient inferences or asymptotically not valid
inferences, especially with small number of imputed data sets (say 2 to
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5). Rubin {2003) defended his methods by saying that even complete
data survey practice can also some times go wrong and referring to my
paper (Rao et al 2003) where 1 have shown, as-mentioned before, that
a standard linear regression estimator can perform poorly in terms of
coverage rates when the working model is strongly quadratic and the
predictor variable is highly skewed. However, I have also shown in that
paper that a model-assisted approach with a working model that ac-
counts for major misspecifications performs well in terms of coverage
performance. Similarly, it is possible to'develop alternative approaches
{even under commonly used single imputation) that are asymptotically
valid under general sampling designs, at least for inference on descrip-
“tive parameters such as population totals and domain totals which are
of primary interest to statistical agencies. In a recent paper, Kim and
Rao (2009) have developed a unified approach to linearization variance
estirmation for population totals and domain totals that leads to asymp-
totically valid inferences under a missing at random {MAR) imputation
model and different imputation methods including Rubin’s ML
Finally, I congratulate RJL on his outstanding contributions to sur- -
vey sampling theory and practice, especially to the important topic of
inference from missing data, and for his thought provoking and siimu-
lating paper on calibrated Bayes prediction approach to inference from
survey data.
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DISCUSSION
D. B. RUBIN
Department of Statistics,
Haorverd University, USA

T congratulate Roderick Little on contributing this eloquently writ-
ten review of perspectives on using weights when drawing inferences
in sample surveys. Because Rod and I have worked together for over
three decades, our views on many topics are compatible. There are,
however, a few points that T would add in this brief discussion. These
points are, I believe, really ones of emphasis and are not in conflict
with views expressed in the target article.

1. Exchangeability of the Bayesian Model on the Data

The first point concerns the exchangeability of units in Bayesian
inference for sample surveys. Ericson (1969) proposed that the ex-
changeability of units, that is, the row exchangeability of the model for
the V (units) by d {variables} population data matrix, Y, is somehow
related to the choice to use simple random sampling : “T believe that
the notion of exchangeability and exchangeable prior distributions very
closely approximates the real opinions of thoughtful ‘classical’ practi-
tioners in many situations where they deem simple random sampling
to be appropriate.” (Ericson, 1969, p. 198).

In contrast, in Rubin {1976, 1978, 1979, 1983), I distinguished be-
tween the model for the population data, P(Y"), and the model for the
process that creates observed and missing values in Y, which in the
sampling survey context is the sampling mechanism, P(7.| ¥), where
I is the N x d indicator matrix for which values in Y are included
in the drawn sample (here, I ignore complications such as unit and
item nonresponse). As stated in Rubin (1978, 1983, 1987), the row
(unit) exchangeability of P(Y") follows from putting all possibly rele-
vant information in (¥, I), so that the labeling of the rows of (¥, 1) is a
random permutation of 1,..., N, thereby implying that P{¥) must be
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row exchangeable, no matter what sampling mechanism is used. Simple
random sampling implies P(I | ¥) = P(I), but it implies nothing about
the exchangeability of units. I believe it is often important to distin-
guish between those modeling assumptions that are justified by physical
actions such as random sampling, stratification, cluster sampling, etc.
and those that are a consequence of mathematical formulations.

2. The Complementary Roles of Bayesian Inference and Repe-

. ated-Sampling Evaluations

The second point concerns the complementary roles for the Bayesian
approach, which derives inferences directly, and the repeated-sampling
approach, which evaluates procedures over the randomization distri-
bution induced by the assignment mechanism (e.g., bias of point es-
timates, confidence coverage of interval estimates). Such evaluations
can be extremely illuminating, especially when they are restricted to
distributions for ¥ that are plausible in particular applications. These
evaluations of the operating characteristics of procedures can be used
with any procedure, no matter how created (e.g., created using the
Bayesian paradigm, via an asymptotic frequentist argument, from a
dream I had}, and they are important to apply to Bayesianly-derived
procedures because essentially all maodels on ¥ are only approximations
to reality. '

For example, the Bayesianly-derived interval estimate for a popula-
tion mean under normality has excellent repeated-sampling coverage in
many situations, and it is the standard in the design-based approach,
although it can also be motivated from a robust Bayesian perspective
(e.g., see Pratt, 1965). Also see Rod’s first example for the strati-
fied random sample case. For another example, one of six chapters
in Rubin (1987, 2004} is devoted to randomization-based evaluations
of Bayesianly-derived multiple imputation procedures. This text also
provides other examples of procedures that are usually justified from
their repeated sampling evaluations, but the text derives them from
the Bayesian perspective; see examples 2.3 and 2.4, and problems 2.11,
2.12. and 2.13 for ratio, pps, and regression estimators, respectively.
The evaluations of such Bayesianly-derived procedures are the path to
being a calibrated Bayesian, as Rod states. - :

- However, contorting these design-based evaluations to be principles
for creating procedures (e.g., unbiased estimation) just does not work in
any generality, as illustrated in Rod’s second example, Basu’s elephant.
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For creating statistical procedures, one really needs the Bayesian ap-
proach, which supplements the model for the assignment mechanism,
which is all that is essential for the evaluations, with a model on the
population data, thereby allowing the direct prediction of the missing
values in Y from the observed values in ¥ and the observed values of
7 _

3. An Analogy with “Word Prol}_lems” and the Calculus of
Algebra .

An informal analogy that I have often used to dramatize the com-
plementary roles of the design-bhased and Bayesian approaches involves
an intelligent child solving a word problem such as the following one.
Anne is 22 years younger than her mother; her mother is 36 years old;
how old is Anne? The intelligent child will answer this question with-
out trouble: Anne is 14 years old. This problem is roughly analogous
to estimating the population mean from a simple random sample. But
now consider the following word problem : Anne is 22 years younger
than her mother; Anne’s father is 2 years older than her motheér; her
mother’s age plus her father’s age is ten years less than six times Anne’s
age; how old is Anne? This problem is roughly analogous to handling
nonresponse in an multistage survey. The intelligent child will proba-
bly struggle with this question until learning the calculus of translating
the word problem into algebra (i.e., symbols) and correctly manipulat-
ing the resulting equations. Now to make sure Anne'’s age is correctly
found, it is always wise to “plug” the purported answer back into the
separate sentences of the word problem to ensure its correctness.

The calculus of algebra is analogous to the Bayesian approach,
which creates answers in both easy and difficult problems based on
explicit assumptions and principles of inference, whereas plugging an-
swers into equations to evaluate their correctness is analogous to the
frequentist’s repeated-sampling evaluations. Both activities, algebra
and plugging in, are useful for correctly solving word problems. And
both statistical approaches, Bayesian derivations and frequentist eval-
uations, are needed for obtaining good answers when confronting com-
plex survey problems,
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4. The Future and the Calculus of Modern Bayesian Compu-
tation

The range of procedures currently available to the Bayesian survey
methodologist goes far beyond the set of procedures that are available
using closed-form algebra. Rod’s work using penalized spline meth-
ods for predicting non-sampled values (Zheng and Little, 2003, 2004,
2005} nicely illustrates this approach. The EM algorithm (Dempster,
Laird, and Rubin, 1977) and its relatives, including the fully Bayesian
Data Augmentation (Tanner and Wong, 1987) and other Markov Chain
Monte Carlo algorithms (e.g., see Gelman et al. 2003, Carlin and Lewis,
2000), or other computationally intensive techniques (e.g., SIR, Rubin,
1987} have allowed the use of complicated explicit and implicit models
that were difficult to imagine using in practice a few decades ago. Hav-
ing such extremely flexible modeling tools available is a tremendous
advantage because the collection of Bayesian models that are appro-
priate in complex survey settings and that have closed-form answers
are really so limited that they often could produce answers that could
easily be viewed as too non-robust for general survey practice.

This past limitation of the Bayestan approach is the primary reason,
I believe, for the traditional dominance of the design-based approach
even when deriving procedures in survey practice. In the future, there
should be a more complementary and balanced use of both perspectives
in survey practice, which is nicely reflected in this target article by
Roder_lck Little.
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REJOINDER
RODERICK J. LITTLE
University of Michigan, USA

I am honoured to have such a distinguished set of discussants, and
appreciate their kind remarks. Since I have learnt so much from Don
Rubin over the years, it is perhaps not surprising that I generally agree
with his points. The article by Ericson (1969) was, I think, very impor-
tant because it emphasized that Bayes provides a solution to the finite
population sampling problem, so no new principles of inference were
needed. However that article focused on simple random sampling, for
which the distribution of I and ¥ are independent, and hence did not
consider complex designs. T think Rubin’s explicit formulation in terms
of the joint distribution of I and Y was important in allowing design
inforination to be included, and it makes the argument for random-
ization more explicit, since other forms of sampling may create hidden
dependences between [ and Y that are assumed away at one’s peril. As
a young statistician struggling with the complexities of survey inference
debated in the 1980’s, Rubin’s formulation clarified for me the appro-
priate Bayesian treatment of inference for complex sampling designs.
T found his Bayesian approach tefreshingly simple - see for example,
Little and Rubin (1983). -

1 appreciate Don’s comments about exchangeability. Ome criticism
~ of Bayes is that full probability modelling is too much work, and includ-
ing “all the possibly relevant information in ¥ to achieve exchange-
ability greatly expands the modelling task. I think one advantage of
random sampling is that it allows us to get by with-simplified models
that do not include all the possibly relevant information in ¥. For ex-
ample, suppose a simple random sample of students is sampled from
a population of studenis, and some sampled students are in the same
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school. The model that ignores school information and assume the stu-
dents are exchangeable violates the fact that characteristics of students
in the same school are correlated. Nevertheless, inference assuming ex-
changeability of students is still reasonable, since the random sampling
renders the inference insensitive to violation of that assumption. Ran-
dom sampling of students allows us to get away with ignoring the school
information, despite the clustering within schools. This would clearly
not be the case if a two-stage sample was selected with the schools as
primary sampling units. o

I-find little to argue with in Andrew Gelman’s discussion. In the
context of pps sampling, Gelman mentions the case of two-stage clus-
ter sampling, in which clusters are sampled pps and then a sample
is drawn from each cluster with probability inversely proportional to
size. In this case, the classical unit weights are all equal, and Gelman
questions whether the model-based spline approach improves much on
the unweighted miean. Simulations in Zheng and Little {2004) suggest
that considerable gains are in fact possible in this setting too. I admit
to some surprise, since like Gelman my intuition suggested that gains
would be minor. '

Gelman’s analogy between weighting and multiple imputation is
intriguing. Various model-based estimation approaches (including least
squares regression) can be considered as weighting with weights that
deviate from the inverse of selection probabilities. However, I suspect
Gelman would agree that prediction of unknowns is the more general
and compelling principle.

My friend Danny Pfeffermann appears receptive to the Bayesian
viewpoint I share with Gelr_nan and Rubin, but his work is more ex-
pansive, and includes “conditional likelihood” approaches that do not
lie strictly within the Bayesian paradigm. I think the approaches devel-
oped by Pleffermann and colleagues are interesting, particularly from
a frequentist perspective, but they run counter to the unified Bayesian
approach espoused in my article.

Pfeffermann’s comments on different forms of conditioning illustrate
his essentially frequentist orientation. An attraction of the Bayesian
paradigm is that conditioning is transparent and unambiguous - pos-
terior distributions condition on all the data. In particular, the choice
between design and variance weights in my initial example in not for
me a “matter of conditioning”, but rather a matter of the choice of
model. In that example, consider the (ill-advised)} model
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Vil Zi, 1) ~ N(p, 0% fus); I | Zi ~ pps(Zs), (1)

where Z; denotes size for unit ¢,pps(Z;) denotes some form of pps
sampling, and u; are known constants modelling heteroscedasticity. If
the sampling fraction is small, Bayes inference under (1) leads to the
variance-weighted mean ), Yiu;/ >, u;, not the mean that weights
by the product weight Z;u; as in Pfeffermann and Sverchkov's condi-
tional likelihood approach. The problem with this Bayesian analysis is
that the model {1} assumes ¥ does not depend on Z, and inferences
are not robust to violations of this assumption. Little (2004, Example
11) considers Bayesian inference for a modification of {1) that leads to
the product weights {Z;u;}, but it is the model that changes, not the
nature of the conditioning or estimation principle.

Pfeffermann discusses the case of pps sampling when non-sampled
values of the size Z are not available to the analyst. He states that the
likelihood is not “operational” in this case; I disagree. The Bayesian
approach simply requires an additional model for Z, since Z is not
known for thé non-sample cases. Little and Zheng (2007) present a
simple Bayesian approach based on a Bayesian bootstrap model for Z.
Even if there are many design variables, it is only necessary to model the
single size variable Z that determind the pps sample, so this approach
is not as computationally complex as Danny implies.

Concerning Pfeffermann’s comments on robust modelling, T feel his
concerns are addressed under the calibrated Bayes approach, as artic-
ulated in Rubin’s work, including his discussion of this article; see also
Little (2006). The key is to distinguish between the inference for the
unknown quantity under a model M, and the operating characteristics
of that inference, which are allowed to influence the choice of M. The
inference under a given model M is purely Bayesian - it conditions on
the observed data, including the inclusion indicators I. The repeated
sampling properties with respect t6 I (for example, the confidence cov-
erage of Bayesian credibility intervals computed under M} are invoked
when considering the “operating characteristics” of M, and these can
modify the choice of M. For example, the model (1} should in many
cases be rejected since the Bayesian credibility intervals under M are
subject to poor confidence coverage {are poorly calibrated) if the as-
sumption of independence of ¥ and Z is violated, as seems likely in
many applications.

Concerning variance estimation, Danny is right that computing a
Bayesian estimator with a design-based estimate of the variance is not
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calibrated Bayes, since the inference is not entirely model-based. I
confess that I have used bootstrap or jackknife variance estimation
as a practical expedient in my work, since the extra work of carefully
modelling the variance structure seerns uniikely to be worth any gainsin
the quality of the inference. This is a deviation from the true calibrated
Bayes path, though perhaps not a major one.

1 appreciate Jon Rao’s extensive and thoughtful discussion, which
clearly reflects a deep appreciation of the issues. A proper rejoinder
would probably require another [ull-length paper, so I limit myself to a
few random commments. In principlé T am a DEI modeler, although (as
noted above) I do lapse sometimes by using a replication-based variance
estimator to avoid full modelling of the variance structure. Jon noted
potential sensitivity to the choice of prior distribution for small sample
inferences - this clearly exists to some extent, but I note that the clas-
sical design-based approach is asymptotic and not guaranteed to yield
good confidence coverage in small samples. Indeed, in the simulations
I have conducted with my collaborators, the confidence coverage of the
“model-assisted” approaches that Jon espouses is in fact inferior to the
Bayesian approach. T have not seen evidence that the calibration step
improves confidence coverage when the model yields design-consistent
prediction estimators on its own. (The simulations of Breidt et al
(2005) do not consider confidence coverage). Jon’s discussion of the
Hansen, Madow and Tepping (HMT) example is topical for me since I
am currently working on the case HMT considers, and hope to report
some results in the summer. 1 am not sure why he states “the separate
ratio estimator is not design-consistent unless the within strata sample
sizes are large”, since my understanding of design consistency would
let these sample sizes increase, given a finite number of strata. I agree
that the separate ratio estimator can be unstable if the stratum sample
size are small, but there are Bayesian fixes for that problem. I’ll reserve
comments on the other examples for future work.

Finally I'd like to thank Jon for augmenting my list of distinguished
Indian statisticians who have contributed to this important topic. It
gives me the opportunity to again congratulate the Calcutta Statis-
tical Association on this jubilee, and to predict numerocus additional
contributions by its members in the future. -
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