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Abstract

The combining of information: Investigating and synthesizing what is possibly common in

clinical observations or studies via likelihood.

A thesis submitted by Keith O�Rourke of Worcester College towards a D.Phil. degree in

the Department of Statistics, University of Oxford, Trinity Term, 2003.

The thesis is to develop an analytical framework for a �exible but rigorous model based

investigation and synthesis of randomized clinical trials - regardless of outcome measure, prob-

ability model assumed or published summary available. This involves the identi�cation of

relevant statistical theory, the development and adaptation of necessary techniques and the

application of these to a number of examples.

A new strategy for the investigation and synthesis of RCTs regardless of outcome measure,

probability model assumed or published summary available was developed to accomplish this.

No such general strategy has been explicitly set out before. It provides a quite general method,

and with adequate sample information, results in arguably correct and adequate techniques

for the assumptions made.

A new method of numerical integration was developed to incorporate �exible random

e¤ects models; an importance sampling approach was developed to obtain the needed observed

summary likelihoods and a Monte Carlo based diagnostic to assess the adequacy of sample

information was produced but remains to be further researched.
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1 Introduction

1.1 Description of thesis

My thesis is to develop a general analysis framework for rigorous model-based investigation and

synthesis of randomized clinical trials - regardless of outcome measure, probability model assumed

or published summary available - drawing on the relevant statistical theory. This involves the

development of a strategy of analysis (i.e. how to discern the relevant pieces of information and then

coherently contrast and possibly combine them together), the identi�cation of relevant statistical

theory (from both the current and historical literature) to motivate and support the strategy along

with the development of necessary techniques to implement the strategy. This �rst involved the

explication of a descriptively appealing and transparent model-based statistical framework[26] for

meta-analyses or systematic reviews of (well designed and conducted) randomized clinical trials.

The more pervasive but implicit combination of information �activity� in statistics was reviewed

in order to gain arguably su¢ cient insight for such a framework. This review was carried out by

recasting some of the theory and techniques of parametric likelihood as being the investigation

and synthesis of what is possibly common in a group of individual observations. Here investigation

is taken to mean the assessment of what individual observations �suggest� largely on their own

and the assessment of con�icts between these individual �suggestions�. Here synthesis is taken

to mean the explicit rendering of a �common suggestion�usually, but not necessarily, limited to

the application of numerical algorithms to individual observations. For instance, the choice of a

�best�observation out of n observations is considered a synthesis if "best" is well de�ned in some

sense. Franklin has recently argued for the value of translating algebra into verbal concepts to

facilitate the application of the algebra or at least its implications into statistical practice[52] and
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the explication of a descriptively appealing and transparent model-based statistical framework was

undertaken for just that purpose.

Likelihood is seen to be the always appropriate summary statistic that usually should just be

added on the logarithmic scale (i.e. an un-weighted average). A large part of current research in

theory in statistics becomes seen as relevant. The history of statistics suggests that this once was

more explicit and widely accepted than it is today and was fairly central in Fisher�s work. This is

apparently somewhat surprising even to some well known scholars of Fisher [private communication

AWF Edwards] and this insight may aid those who try to understand Fisher�s work.

A novel but perhaps at �rst distracting aspect of the strategy is to focus on individual obser-

vation likelihoods de�ned as

L(�i; yi) = c(yi) Pr(yi; �i)

preferably with the choice of c(yi) to make

L(�i; yi) = Pr(yi; �i)=Pr(yi;��i):

The full sample likelihood is then purposely written out as a multiple of these individual observation

likelihoods

L(�1; �2; y1; y2) = L(�1; y1) � L(�2; y2):

By doing this, it is made clear which parameters are common, common in distribution or arbitrarily

di¤erent by observation. Common parameters are identi�ed by the repeated appearance of the same

parameter in the likelihood, such as � in

L(�1; �2; y1; y2) = L((�; �1); y1) � L((�; �2); y2):

When there are common in distribution parameters, unobserved random parameters di¤er by study

but are related by being drawn from the same "common" distribution. In such cases, one would

likely wish to denote such parameters as random variables ��i drawn from Pr(�
�
i ; �). Here for there

to be commonness, the � must have components that repeat in likelihoods of di¤erent (usually

groups of) observations. This will be further clari�ed and more fully discussed later.

No such general strategy for the investigation and synthesis of RCTs, regardless of outcome

measure, probability model assumed or published summary available, has been explicitly set out
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before. It is quite general, and with adequate sample information, results in arguably correct

and adequate techniques for the assumptions made. It facilitates the implementation of either

Bayesian or Classical inference, though this thesis largely concentrates on the more challenging

to implement Classical inference[39]. It initially entertained an alternative approach for dealing

with random e¤ects - using techniques originally developed in robust inference - but found this

approach defective for models with unknown scale parameters and more general (e.g. asymmetric)

random e¤ects distributions (that have di¤erent expected treatment e¤ects than from the �xed

e¤ect model)[102][98]. Instead, a new method of numerical integration was developed that provides

valid upper and lower bounds to allow the more con�dent use of a wide range of random e¤ects

models.

The thesis also facilitates the thoughtful consideration of possibly very complex models (to deal

with publication bias, randomization assignment unblinding, di¤erential loss to follow up, etc.) and

directly motivates techniques for the sensitivity analysis of these now more explicit assumptions

being made. Limitations of sample information for such complex analyses arise from the "state of

the literature" - information cannot simply be created. For a discussion of non-likelihood-based

methods should the likelihood approach become prohibitively time-consuming or non-robust, see

chapter 8:4 in Cox[27]. On the other hand, prior information might be used to help overcome this

limited information[62].

The result could be described as a "generalized meta-analysis model" - analogous to the Gener-

alized Linear Model. But where as the Generalized Linear Model was largely achieved by limiting

both the choice of probability models and their parameterizations, the generalized meta-analysis

model does not restrict the probability models or their parameterizations but instead implements

general estimation by numerical optimization of likelihoods and implements inference for individ-

ual parameters by pro�le likelihood. This extra generality requires a means to obtain the group

summary observed likelihoods, better numerical integration techniques for evaluating �exible ran-

dom e¤ects models that do not have closed form representations, global optimization techniques to

avoid local optimizations and ideally a diagnostic for when pro�le likelihood runs into "Neyman-

Scott" type di¢ culties. Such extra generality is largely available in meta-analysis applications due

to there usually being independent groups of independent observations that facilitate the applica-

bility of central limit theorem type results to the group likelihoods though, as it will be shown,

not necessarily to the combined likelihood. With the development of the necessary techniques, the
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value of the strategy was then demonstrated on a number of meta-analysis examples.

The direct use of the theory of statistics (or at least parametric likelihood-based theory) to

motivate and support a general analysis framework for meta-analysis has been largely ignored in

the literature. The lack of success in the usual setting of a single study perhaps discouraged such

attempts. On the other hand, most researchers in meta-analysis do not see the theory of statistics

as a source of concepts and techniques directly applicable to meta-analysis. More speci�cally,

they do not view statistical theory and methods for observations as essentially being meta-analysis

of studies having sample size one. Instead, many view meta-analysis as a "two-stage" process

involving the calculation of an appropriate summary statistic for each of a set of studies followed by

the combination of these statistics into a weighted average[35]. Within this perspective, Generalized

Linear Modeling for instance, is perceived only as a technique that uses the "correct" summaries

and "correct" weights for the outcome measures - but not as in any way related to a model-based

likelihood analysis. Alternatively, while Bayesian researchers use model-based approaches, their

emphasis has primarily been on prior distributions and the large role they play[121]. In particular,

the role of the likelihood in the combination of observations and studies has been obscured and

needs to be re-emphasized as done in O�Rourke and Altman[85]. On the other hand, though many

statisticians have worked on meta-analysis, it is usually with respect to a speci�c technique or

topic such as p_value censorship rather than a general theory or approach.

Some statisticians may regard meta-analysis as so similar to usual statistical analysis as to not

require special consideration [personal conversation Irwin Guttman]. That claim has been consid-

ered in this thesis, and, to a large extent, it is justi�ed for those who are already aware of it - but

for a general approach to meta-analysis to be fully developed and widely appreciated this justi�-

cation needs to be explicitly made. A similar exercise to develop an explicit strategy for analysis

of variance has recently been carried out by Andrew Gelman[56]. The strategy he proposes is to

view analysis of variance as the batching of coe¢ cients into groups - often considered exchangeable

within the groups. The strategy in this thesis, on the other hand, starts with parameters in like-

lihoods for individual observations and then decides which parameters are common, common in

distribution or arbitrary and then which to focus on and which ignore by treating them as nuisance

parameters that are somehow to be evaded.

For clinical research practice, the two-stage approach is widely believed to re�ect pragmatically

important insights and to provide appropriate techniques for the investigation and synthesis of
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RCTs in most application areas. This belief is perhaps fostered by it being more or less the case

with single studies in many areas of applied statistics (at least when there are independent groups

of independent observations). In such cases, complex analyses can often be split into pieces and

intelligently and e¤ectively re-assembled using a simple two-stage approach based on means and

variances[2]. Such a favorable state of a¤airs o¤ers important advantages to a clinical research

community that is not highly trained in statistics and needs guidance and advice as to if, and

when, these simple approaches are appropriate and adequate. In the current context of evidence-

based medicine the treatment one will or will not receive is likely to be heavily in�uenced by

simple methods, adequate or otherwise. Adequate ones are arguably preferable and the two-stage

approximation should not be undervalued. It was argued in O�Rourke (unpublished) that such

simpli�ed approaches to statistical analysis in general were important and perhaps in some wider

sense - especially when collaborating with colleagues with limited statistical training - may provide

optimal "human information processing" within and between researchers. However, with respect

to the combined likelihoods that will be encountered in this thesis that can be very non-quadratic

and easily multi-modal - such an approach may not be applicable. A transparent graphical display

may be helpful here. The raindrop plot[10] was initially considered in this regard but was found

to be somewhat de�cient in highlighting the non-quadratic components in some examples. A new

plot was developed to make it more transparent as to how the individual log-likelihoods add up to

the pooled log-likelihood, in ways that may be very non-quadratic and multi-modal.

In any event, the two-stage approach does need to �rst "hit on" the "correct" summaries and

"correct" weights for the meta-analysis in hand, and although this may seem obvious for many ap-

plications, for some it is not. For instance, for dealing with the simple but less common application

of combining common proportions from single groups, the "correct" weights are obvious using the

strategy of this thesis - ni - but the common two-stage approach (or at least a misunderstanding

of it) has been used to claim the correct weights must be ni=(yi=ni � (1� yi=ni)).[43]

It will be argued that the thesis provides a general framework for the solution of statistical

questions and di¢ culties that arise when undertaking meta-analyses in clinical research. For in-

stance, in my MRC funded research fellowship with the Centre for Statistics in Medicine on the

meta-analysis of continuous outcomes, a number of identi�ed challenges arose using the popular

two-stage approach to meta-analysis of �rst choosing a �good� summary estimate of something

expected to be common from each study and then determining some �optimal� combination of
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these summaries. (This approach has been succinctly described in Cox[24] and worked through

in numerous practical aspects in the Cochrane Handbook[18].) More speci�cally, drawing from

Cox[24], let t1; :::; tmbe the good summary estimates from m trials that can be assumed to be

approximately normally distributed around � (here a scalar) with known variances v1; :::; vm, cal-

culated from the internal variability within the separate trials. The "best" combined estimate of � iset = (P tj=vj)=(
P
1=vj) where et will, under the assumptions of normality, be normally distributed

around � with variance (
P
1=vj)

�1. This will be called the two-stage inverse variance weighted ap-

proach for meta-analysis or more generally just the two-stage approach (when other weights might

be used) and is standard in many clinical research contexts (with various extensions for random

e¤ects). It is only appropriate though, if all of the log-likelihoods are essentially quadratic in the

region of combination; otherwise the combined log-likelihood will not be approximately quadratic.

The two-stage approach tends to focus on statistical summaries rather than parameters and

on procedures and techniques �i.e. linear (weighted) estimating procedures - rather than on un-

derlying probability models that are conceptualized as having generated the observations (random

variables) and appropriate inference for those assumed models and observations. Again, without

explicitly considering an underlying probability model and appropriate inferences for it, suggested

modi�cations of procedures and techniques can only be on a hit-or-miss basis. There is a temp-

tation to "guesstimate" the needed means and standard deviations and then proceed as if these

are known[66]. In the given reference, the example purported to demonstrate the value of such a

method that was based on using medians and ranges of within patient change scores, but these

were actually unavailable to the authors. Instead the authors "imputed" values using information

on group mean scores over various treatment applications on di¤erent days, even when considerable

drop out occurred [private communication].

Furthermore, the non-parametric conversions they used were based on inequalities between

sample medians and ranges and SAMPLE means and standard deviations which are only indirectly

relevant - it is population means and standard deviations that are of inferential relevance. In

general, such conversions are single imputations of missing summaries, where use of the usual

techniques and narrowly de�ned best estimates can be very �awed. On the other hand, given an

appropriate likelihood-based approach, as will be shown, the resolution of the di¢ culties is largely

straightforward except for numerical computing challenges. Fortunately, given the insight from

the likelihood-based approach, an adequate quadratic approximation of it (for practical purposes)
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will often be achievable and that approximation itself can be carried out as a two-stage approach

(which simply provides an arithmetical way to combine the quadratic likelihood functions). This

though, does need to be rigorously assessed as being pragmatically valid for the particular case.

Given that the likelihood-based approach is not too computationally demanding, it makes good

sense to check each particular case, though the development of guidelines would be useful and is

future research.

In statistics, parametric likelihood usually does not end with just a presentation of the (com-

bined) likelihood function. This thesis does not accept the suggestion made by certain authors[101]

that the likelihood function is all that need be or should be presented . The two most common

additions to, or further renderings of, the likelihood function are the construction of con�dence

intervals or the calculation of posterior probabilities as a function of assumed prior probabilities to

get credible intervals. This thesis accepts both as worthwhile additions to the likelihood, though

the posterior probabilities less so with contrived rather than "arguable" prior information[57][27].

The likelihood function is being taken in this thesis as simply a device to obtain good con�dence

or credible intervals and nothing more. Emphatically, if the use of the likelihood function leads to

defective con�dence or credible intervals in a particular application - it would be rejected for that

application. Speci�cally to avoid defective con�dence intervals due to Neyman-Scott problems, a

diagnostic was produced to help detect this and remains future research.

In practice, neither the construction of con�dence intervals nor that of posterior probabilities

has much of an e¤ect on the sample based investigation and synthesis of what is possibly common

given a model - this is usually all undertaken using likelihood. Priors (though usually just implicit)

arguably should have a large role in determining what should be initially entertained as being

common between experiments (based on their scienti�c design), but given this, the empirical

investigation is largely likelihood-based except for prior-data con�ict[44]. Hence both of these

further renderings will not have a large emphasis in this thesis. The Classical versus Bayesian

constructions/calculations usually di¤er in meta-analysis of randomized clinical trials, not with

respect to likelihood functions used, but only with respect to how they modify the likelihood

functions to get con�dence intervals versus posterior probabilities. Additional di¤erences may

arise in the ad-hoc choices of how to summarize likelihoods or summarize posterior probabilities

such as choosing between the posterior mode and mean. These may result in dramatic di¤erences

in the inferences even given identical likelihood functions.
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This thesis emphasizes what is usually common in Bayesian and Classical approaches to meta-

analysis. Of passing interest, though, empirical Bayes and Bayesian approaches to parametric

statistics can be viewed as simply comprising an additional investigation and synthesis of what

is common between an estimated or known distribution of a parameter and likelihoods for that

parameter. The focus in the Bayesian approach then, will be on both the combination of obser-

vations by likelihood and the combination of probabilities by Bayes theorem. This "combining"

view has become more prevalent recently[44]. More general combinations have been studied by

Dempster[36][37].

1.2 Combination of observations: A parametric likelihood approach

For constructing a general strategy, parametric likelihood arguably provides a better route for

the reasons alluded to above. A brief summary of the review of the parametric likelihood-based

approach to statistics, conceptualized as the investigation and synthesis of individual observations,

is as follows:

1. A descriptively appealing and transparent de�nition of likelihood is �the probability of

re-observing exactly what was observed� under a given probability model � in notation

L(�; observed) = f(observed; �) considered as a function of � an n-dimensional vector of

reals for �xed observed, where observed can never really be a continuous number but instead

some interval and, more often than not, in meta-analysis is a reported summary rather than

actual individual observations. For notational convenience, from now on the observed will

simply be denoted by y:

2. Likelihoods from di¤erent observations multiply (after appropriate conditioning if observa-

tions are dependent).

3. If there is more than one likelihood and something is common in these likelihoods - i.e. some


(�) is repeated in the likelihoods - the multiplication of them provides a combination for

that (the 
(�)), and under the probability model, that multiplication provides the �best�

combination. A common parameter reparameterization may help make this more apparent.

For instance, for � = (�1; :::; �k) a common parameter reparameterization is given by ! =

!(�1; :::; �k) = (
; �i); where 
 = 
(�1; :::; �k) (the something that is possibly common) and

�i = �(�1; :::; �k)i and conversely, �i = �i(
; �i) for each observation i:
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4. It does not matter if likelihoods are based on n = 1 (a single observation) or n = k (a single

study) for 1, 2 & 3 and the order of multiplication also does not matter.

5. There usually is something common - 
(�) and something non-common �(�)i in the proba-

bility model entertained -

f(yi; 
(�); �(�)i)

The something common may be a particular parameter or a distribution of a particular

parameter (often referred to as a random e¤ects model) and that commonness will be with

regard to a particular transformation 
. Perhaps a good example of this would be a non-

common treatment e¤ect parameter transformable into a common direction parameter and

a non-common magnitude parameter.

6. When it is the distribution of a parameter that is common, the multiplication referred to

above for combining applies only to the marginal or expected likelihood with respect to the

distribution of 
�i � p(
) i.e.
Q
iE
L(


�
i ; yi) as

Q
i L(


�
i ; yi) does not provide a combination.

7. In meta-analysis, usually only a summary of y is available, say s(y), so the required likelihood

is L(�; s(y)) i.e. a marginal likelihood with respect to the distribution of individual obser-

vations, which is �forced� upon the meta-analyst. This is in line with Barndor¤-Nielsen�s

de�nition on page 243[8]

"If u is a statistic we speak of the likelihood function which would have been obtained if

only the value of u, and not the basic data y, had been observed as the marginal likelihood

function based on u."

It is de�ned as:

De�nition 1 The marginal likelihood is de�ned as c(s(y)o)
R
y�
Pr(y; �)dy where Pr(y; �) is

the probability, y the set of possible individual observations and y� is a "level set" of y such

that s(y) equals the reported summary s(y)o. The
R
may be a

P
depending on the probability

model Pr(y; �) for the outcomes y and it is assumed that the probability model is de�ned on

a partition y = fyg and that the function s(y) is measurable. See also formula 2 of Copas

and Eguchi along with examples and additional technical reference[20]
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8. Naming conventions are problematic here, marginal in 7 re�ecting unobserved (missing)

observations and in 6; an unobserved random parameter. Sung and Geyer refer to both

situations as missing "Missing data either arise naturally - data that might have been observed

are missing - or are intentionally chosen - a model includes random variables that are not

observable (called latent variables or random e¤ects)."[115] They also point out that the

�rst marginal likelihood is also called the observed data likelihood. Following this, in this

thesis, the marginal over the unobserved data likelihood will be called the observed summary

likelihood. For the marginal over the unobserved random e¤ects likelihood, Skrondal and

Rabe-Hesketh[107] call the mixing or latent variable distributions higher level distributions,

with the level depending on the hierarchy involved. For instance, in meta-analysis, there

would usually be only a level 1 and level 2 distribution. Following this, the level 1 likelihood

is conditional on the value of unobserved random e¤ect while the level 2 likelihood only

involves parameters of the common distribution (from which the unobserved random e¤ect

was drawn), obtained by integrating over the unobserved random e¤ect. Their terminology

serves to both indicate the hierarchy involved in the likelihood as well as to distinguish it from

other methods of dealing with unobserved random parameters, such as h-likelihoods[74]. The

terminology clearly and succinctly identi�es the likelihood that involves only the parameters

of the common distribution and con�rms that this likelihood was obtained by integration. It

has thus been adopted in this thesis for consistency, clarity and convenience.

9. As the integrals in 6 and 7 will not be tractable in general, numerical methods will be required.

For 6, the dimension is usually equal to one (arguments for this are given later) and for this,

new numerical integration methods that provide valid lower and upper bounds were devel-

oped. For 7, the dimension is usually high (number of observations in s(y)o) and if y� can be

uniformly sampled from,
P
y�
Pr(y; �) will in principle provide a stochastic approximation[100].

Alternatively, as will be shown later L(�; s(y)o) =
Z

dPr(yj�)
dPr(yj�0)dPr(yjs(y)o; �0)dy and this sug-

gests the use of
X

p(yj�)
p(yj�0) as a stochastic approximation where samples are simulated from

p(yjs(y)o; �0) (note here only a single value of �0 is required). The EM algorithm and other

systematic approximations might also be considered when the exact marginal distribution is

not available, but they are not addressed in this thesis.

10. Bayes (Empirical Bayes) is the combination of probabilities of something common by mul-
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tiplication: Pr(�) � L(�; y) where Pr(�) is the known (or estimated in parametric empirical

Bayes) distribution of � and L(�; y) is as in 1.

11. In general, it is not known how to get exact con�dence intervals from �iL(�; yi) - in par-

ticular for a common mean with arbitrary variances, e.g. where the combined likelihood is

equal to �iL(�; �i; yi); they are known not to exist even under assumptions of Normality,

(see page 77 of Sprott)[109]. Alternatively, while it is known how to get credible intervals,

in general it is unknown as to how to get the meaningful priors required[57], especially if

� is of high dimension, or how the shape of these intervals should be chosen [personal con-

versation, Mike Evans]. However if log �iL(�; yi) is approximately quadratic in the region

of its maximum, at least from a practical point of view, con�dence intervals and regions

based on the likelihood ratio (using �rst order results relating to the likelihood ratio being

distributed approximately as a chi-square random variable [8]) and credible intervals using

non-informative or reference priors are non-controversially obtainable and are usually quite

similar[99]. Unfortunately, especially with unknown scale parameters, log �iL(�; yi) may be

far from quadratic. Additionally, as samples are sometime "small", a possible diagnostic for

Neyman-Scott type problems has been produced and initially considered .

12. With the combined likelihood �ni=1L(�; yi) based on a common � and

�ni=1E�L(�
�
i ; yi)

based on a common distribution of ��i � p(�), some seem to suggest the use of a location

estimate assuming a common � (i.e. from �ni=1L(�; yi)) along with an empirical estimate of

scale (sometimes called a robust estimate) instead of both location and scale estimates based

on assuming a common distribution of � (i.e. �ni=1E�L(�
�
i ; yi) ) - even if the commonness

is believed to just be a common distribution of � �see page 305 of Barndor¤-Nielsen and

Cox [8] and also Sta¤ord[111]. This particular way of dealing with an arbitrary common

distribution of ��i � Pr(�) using an asymptotically motivated adjustment by Sta¤ord[111]

was initially appealing but was found de�cient for models with unknown scale parameters

or general random e¤ects distributions such as those with asymmetric random e¤ects, where

the expectation of the �xed e¤ect MLE is no longer relevant[102]. In fact, with some cases

of multi-modal likelihoods, Sta¤ord�s adjustment lead to an increase rather than decrease in
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the concentration of the log-likelihood.

13. The parameters can be grouped into within group parameters (e.g. control rate, baseline

hazards, variances, etc.) and between group parameters (e.g. treatment e¤ect, study by

treatment interaction, baseline imbalance, etc.) and quali�ed as being of interest as opposed

to of "nuisance" and as being common or non-common (just common in distribution or even

arbitrary.) Random e¤ects (�parameter�marginalizing) and pro�le likelihoods (�parameter�

maximizing) are often useful strategies for dealing with the within group and non-common

parameters (and perhaps more so pro�le likelihood for the within group and random e¤ects

for the between group as suggested in Bjonstad[13]). In some cases conditioning and �sample�

marginalizing will also be helpful, but this is less likely for meta-analysis in clinical research

than it was for meta-analysis in astronomy[81] where a large number of very small studies

were actually encountered or perhaps more importantly could be anticipated.

14. It may also be useful to think of the various values of the nuisance parameters as generating

various likelihoods for the parameter(s) of interest, and the issue being again the investigation

and synthesis of what is possibly common in these various likelihood functions which di¤er

for unknown values of the nuisance parameters. One could think of the unknown nuisance

parameters as being like unknown sources of measurement error that caused observations

of something common to di¤er from each other. Early astronomers debated about using

un-weighted versus weighted averages as well as other methods of combining the di¤ering

observations. Integrated likelihoods
R
L(�i; yi)d�i are an obvious "un-weighted" combination

of likelihoods over nuisance parameters[12]. �Parameter� marginal likelihoods in random

e¤ects approaches weight likelihoods by the probability of the unobserved random nuisance

parameter -i.e. E�L(�
�
i ; yi) or

R
L(��i ; yi) Pr(�

�
i ; �)d�

�
i . Also, according to Barnard when

reviewing Bennett�s collection of Fisher�s correspondence [5], Fisher�s interpretation of the t-

likelihood was that of the likelihood integrated with respect to the Fiducial distribution of �2

based on s2. Pro�le likelihood could also be viewed as a particular combination of di¤ering

likelihoods - where the combination is to choose from the possible values of the nuisance

parameters those that are most likely ("best") for each value of the common parameter.

This parametric likelihood-based approach was to some extent anticipated in the �likelihood

menu� sketched out in O�Rourke[83] and the strategy was originally suggested in the appendix
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of L�Abbe, Detsky and O�Rourke[72]. This thesis greatly extends its scope and generality to

arbitrary summary statistics and general probability models as well as general random e¤ects

models. A simple random e¤ects meta-analysis speci�cation might be helpful here. With Normal

assumptions for each study i, with a common within study �i, an arbitrary control �i and a random

treatment e¤ect ��i ; the parameters are �i1 = (ui; �i) for the control groups, �i2 = (ui+�
�
i ; �i) with

��i ~Normal(v; �b) for the treatment groups. With m studies and j = 2 observations per study, one

each in control and treatment, there would be the following level 2 likelihoods (after integration of

the unobserved ��i )

L(((v; �b); �1; u1); y11; y12) � ::: � L(((v; �b); �m; um); ym1; ym2)

with common � = (v; �b) and arbitrary ui;�i.

1.3 New and adapted techniques

1.3.1 Bounds for level 2 likelihoods

The lack of closed form formulas for level 2 likelihoods for many random e¤ects models can possibly

be overcome by the use of numerical integration methods. For instance, there are a number of

current proponents for the use of Adaptive Gaussian Quadrature for this[107].

Recall that Gauss rules consist of a set of n points and weights (xi; wi) such that
Pn

i p(xi)wi =R
A
p(x)w(x)dx for every polynomial p(x) with degree less than or equal to 2n � 1. By choosing

w(x) to be a probability density with the required number of moments, one could chose to rewrite

an integrand of interest, say f(x); as f(x)
w(x)w(x). Choosing w(x) to be a Normal density with its

mean set equal to the mode of f(x) and variance set equal to the curvature of f(x) at the mode

gives Adaptive Gaussian Quadrature. This observation initially lead to an investigation in this

thesis of various generalizations of Adaptive Gaussian Quadrature.

First, the mean and variance of a Normal density were chosen to make f(x)
w(x) a lower order

polynomial than the standard choice. Second, various densities other than the Normal were

considered along with choices of parameter values for these that made f(x)
w(x) a low order polynomial.

The set of n points for a reasonable n can sometimes be calculated using techniques from von

Mises[108]. Some initial success was obtained for some random e¤ects models (i.e. the Beta �

Binomial and Binomial�Normal) but more generally, the approach faltered due to the di¢ culty
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encountered in choosing a good density for w(x) to make f(x)
w(x) approximately a low enough order

polynomial such that calculating the needed n points was feasible. The great strength of Gauss

rules is that if the integrand is known to be a polynomial of degree less than or equal to 2n � 1,

and an n point rule is used, the quadrature will have no error. Unfortunately with e¤orts so far,

it was not possible to achieve this, even approximately, and the errors of integration using the

generalizations were both unknown and possibly large.

Unfortunately, errors of integration with numerical integration techniques are usually both

unknown and possibly large. For instance, with the current proposals to use Adaptive Gaussian

Quadrature this would be the case if the random e¤ects model f(x) resulted in a f(x)
w(x) that is far

from a polynomial that can be integrated exactly. Typically the error analysis that accompanies

numerical integration is heuristic. The error can be intrinsic to the numerical integration technique,

sometimes referred to as algorithmic error, or due to representation of the problem on a speci�c

computer, sometimes referred to as round-o¤ error. In this thesis, the discussions are restricted

to the algorithmic error which is usually much more important, though round-o¤ error could

possibly be important in some applications. With only heuristic bounds on algorithmic error one

is always unsure of the validity of level 2 likelihoods from random e¤ects models obtained via

numerical integration. For instance, Geyer o¤ers an importance sampling approach to obtaining

level 2 likelihoods and comments that except for toy problems, the true level 2 likelihood always

remains unknown[115]. There is, however, a numerical integration method developed by Evans and

Swartz[45] that does give valid lower and upper bounds. Drawing on basic results from calculus,

they showed that for concave functions f (n), (i.e. the n-th derivative of f),

nX
k=0

f (k)(a)

(k + 1)!
(b� a)k+1 + f (n)(b)� f (n)(a)

(b� a)
(b� a)n+2
(n+ 2)!

�
Z b

a

f(x)dx �
n+1X
k=0

f (k)(a)

(k + 1)!
(b� a)k+1:

For convex f (n) these inequalities are reversed. Given this, one can construct valid upper and lower

bounds for
R b
a
f(x)dx - if one can �nd the regions of concavity for f (n). Examples where the regions

of concavity can be analytically determined were given by Evans and Swartz[45]. Now the regions of

concavity for f (n) are given by the roots of f (n+2) (more precisely, simple roots that are associated

with sign changes) and all of these can be found, with some assurance, numerically using results

from Topological Degree Theory[67]. It was shown that the following integral equation counts the
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number of simple roots of f (n+2) in the interval (a; b)

� 1
�
[


Z b

a

f (n+2)(x)f (n+4)(x)� f (n+3)(x)2
f (n+2)(x)2 + 
2f (n+3)(x)2

dx+ arctan(

f (n+3)(b)

f (n+2)(b)
)� arctan(
f

(n+3)(a)

f (n+2)(a)
)]

where 
 is an arbitrary small positive constant.

Given that this result allows one to count the number of roots in an interval, numerical methods

were developed to implement Evans�and Swartz�numerical integration method for random e¤ects

models encountered in a meta-analysis setting. These usually involve only one dimension (i.e. a

single random e¤ects on the treatment e¤ect - see later for arguments against additional random

e¤ects on control group parameters). An algorithm was designed that recursively splits the interval

of integration until f (n+2) has zero roots on all of the intervals and hence f (n) is either concave or

convex on all the intervals. Speci�cally, if a given interval is not easily numerically integrated with

default numerical integration routines (an heuristic error warning is generated) or if the numerical

integration of the integral equation indicated there was more than 1 root, the interval is split in

half. On the other hand, if the default numerical integration indicated there was only 1 root, a

numerical search for the root was carried out and the interval split at the root that was found. The

recursion stops only when all of the numerical integrations of the integral equation on the recursively

constructed intervals equal 0 at a given tolerance. Then, the rule is recursively compounded within

these intervals until a given gap is achieved between the upper and lower bounds. One last check

that all of these intervals have 0 roots can be made at this point (this may require a fairly long

computing time). This was implemented in both R[95] and Mathematica software[122] and was

successful on a number of "toy example" random e¤ects models of interest in meta-analysis giving

extremely narrow lower and upper bounds. The Mathematica program was faster and more �exible

than R. As the algorithm involves many calls of standard numerical integration routines and root

�nding routines, the upper and lower bounds take much longer to calculate than the default

numerical integration result. Further details on the algorithm implemented in the Mathematica

program are given in appendix F. Perhaps surprisingly with most results to date, the default

numerical integration has usually been close to the bounds (given it successfully runs) and usually

somewhere between the lower and upper bound. This suggested that the algorithm could be used

to provide valid lower and upper bounds at chosen points on the level 2 likelihood surface of interest

rather than used to calculate all the points.

With actual bounds on the level 2 likelihoods, the methods of this thesis can safely be applied.
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To apply the methods of this thesis, one needs to evaluate a likelihood surface and reduce that

to a likelihood curve for a parameter of interest via pro�ling. It is much more feasible to �rst

use the default numerical integration techniques to get the likelihood surface, and then check

the resulting likelihood curve by obtaining the bounds at selection of parameter points from the

curve on the surface traced out by the pro�ling. Additionally, one may wish to check that the

pro�ling based on the default numerical integration techniques actually gave the correct curve by

checking a number of points on the surface (i.e. use a grid of points) and taking the maximum

of these over the nuisance parameters. This took only a few minutes of computing time for toy

examples, but up to a few hours for real examples. The computational burden will not be modest

for some, or perhaps even many, meta-analyses likely to be encountered in the literature - especially

given the ideal of pro�ling the treatment e¤ects estimates from the full combined likelihood (often

greater that 2 times the number of studies). Both parallel computations and a more informed

and organized computational approach along the lines currently being undertaken by Douglas

Bates and colleagues[11] for generalized mixed e¤ects models will likely be required. Despite

Evans and Swartz�s severe criticism of the inadequacy of so-called "error estimates" provided

by numerical integration methods, many users seem fairly unconcerned. Apparently, no other

numerical integration method at this time provides valid upper and lower bounds for general

integrands of one dimension.

1.3.2 Importance sampling approximations for observed summary likelihoods

The lack of closed form formulas for observed summary likelihoods also presented a challenge for

this thesis. Initially motivated by a formula given by Barndorf-Nielsen for the analytical derivation

of marginal likelihoods, it was realized that rescaled importance sampling allowed the calculation

of a likelihood surface when conditional samples were drawn from an "opportunistically" chosen

single point in the parameter space. The result used was from Barndor¤-Neilsen[7] and simply

given (in di¤erent notation) as

fU (u j �)
fU (u j �0)

=

Z
fX (x j �)
fX (x j �0)

fXjU (x j u; �0) dx

Now, the marginal distribution is simply

fU (u j �) =
Z
x�
fX (x j �) dx where x� is the level set given by u = U (x)
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(or more formally x 2 fx : U (x) = ug) but only the (relative) likelihood fU (uj�)
fU (uj�0) is needed. Now

fU (u j �)
fU (u j �0)

=

Z
x�
fX (x j �) dx

1

fU (u j �0)

fU (u j �)
fU (u j �0)

=

Z
x�

fX (x j �)
fX (x j �0)

fX (x j �0)
fU (u j �0)

dx

fU (u j �)
fU (u j �0)

=

Z
fX (x j �)
fX (x j �0)

fX (x j �0)
fU (u j �0)

fU jX (u j x; �0) dx

fU (u j �)
fU (u j �0)

=

Z
fX (x j �)
fX (x j �0)

fXjU (x j u; �0) dx

Alternatively, starting out as importance sampling

fU (u j �) =
Z

fX (x j �)
fXju (x j u; �0)

fXju (x j u; �0) dx

fU (u j �)
fU (u j �0)

=

Z
fX (x j �)
fX (x j �0)

fXju (x j u; �0) dx

Conditional samples were simply generated by rejection sampling. An assumed probability dis-

tribution for the unobserved sample values was set to opportunistically chosen parameter values

and a sample of the same size drawn and only those matching the reported summaries within a

given tolerance were kept. An overly high rejection rate here may be suggestive of the assumed

probability distribution for the unobserved sample values being inappropriate. Likelihoods for

each of the kept samples were then added (no need to normalize) to get an approximation of the

observed summary likelihood. This was done for reported summaries where the observed summary

likelihood is available in closed form and the approximation was found to be very close, as can be

seen in Figure 1 for 13 studies that reported minimums, medians and maximums on the original

scale (a more complete analysis is provided later). The graph shows simulated versus exact ob-

served summary log-likelihoods under LogNormal assumptions for the log mean, with log variance

treated as known and equal to 1 (for even sample sizes there are two lines, one for n� 1 and one

for n + 1). Full likelihood methods and pro�le likelihood methods have also been applied to the

simulated observed summary likelihoods - though the computational challenges increase with the

need to deal with many simulated likelihoods.

Of course, for models with su¢ ciency, one only needs to condition on the su¢ cient statistics.

Without su¢ ciency, one would possibly need to condition on all reported summaries. If this be-
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comes a problem of feasibility there may be some pragmatic justi�cation for just conditioning on as

many as possible. More likely, there will be too little to condition on. For instance, if just p-values

and sample sizes were reported on, except in exceptional models, the parameters would not be

identi�able - perhaps prior information could then be used to overcome this[62]. There would be

the additional challenge of less than adequate information to suggest an good �0 to sample from.

Also, although one needs to make probability assumptions to generate the samples, those same as-

sumptions need not necessarily be made in the analysis. The use of empirical likelihood[88] is worth

at least considering and remains to be further researched. Originally, BLUE location-scale estima-

tors that had some applicability for various assumed probability models and particular summaries

of the outcomes were considered. But as these were limited to probability models in the location

scale class, allowed only the use of summaries that have expectations determined by location scale

transformations of the standard parameters and gave only quadratic log-likelihood approximations,

they have been abandoned. They did however, turn out to be useful for obtaining good points

in the parameter space for importance sampling of the observed summary log-likelihoods. Good

points, that is, in the sense of making the conditional sampling e¢ cient (not discarding too many

draws) and providing parameter points not too far from the MLE thus avoiding an importance

sampling distribution with a highly variable integrand.

1.3.3 Neyman-Scott diagnostics based on simulated modi�ed pro�le likelihood

Concerns about Neyman-Scott problems are hard to de�nitively rule out. Wide experience shows

that with even a few observations per nuisance parameter, they can be very minor. Theory

suggests comparisons with conditional or marginal likelihoods as a gold standard test when such are

available[32]. This was originally addressed in this thesis for Odds Ratios with some suggestion that

the more generally available integrated likelihood be used as a comparison. Theory also suggests

comparison with modi�ed pro�le likelihood which is more generally available - but still limited

in most cases by the need for sample space derivatives that have yet to be forthcoming. Within

this theory, approximations to modi�ed pro�le likelihood have been proposed that both avoid the

need for sample space derivatives and can be obtained from Monte-Carlo simulation[106][90]. The

required simulations can be quite demanding, but similar in strategy to the bounds for numerical

integration, the pro�le likelihoods can be �rst used to get approximate con�dence intervals and

crucial points assessed by simulated modi�ed pro�le likelihood.
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Figure 1: Simulated versus exact observed summary log-likelihoods for 13 studies that reported
minimum, median and maximum. Simulated = * , Exact = solid, dotted or dashed line (odd, even
+1, even - 1)
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1.4 Preview of examples and �ndings

A number of single-group and two-group examples will be used to demonstrate the approach of

this thesis. Binary and continuous outcomes will be covered. An example will be presented of a

meta-analysis where some studies reported treatment group means and variances, others treatment

group minimums, medians and maximums. Studies in another meta-analysis reported minimums,

means and maximums. (The derivation of joint observed summary distributions minimums, means

and maximums is di¢ cult to obtain in general - for instance see page 228 Arnold, Balakrishnan

and Nagaraja[3].)

When the approach of this thesis was applied even to studies that reported means and variances

under the assumption the outcomes were Normal - where the closed form likelihoods are directly

available - the two-stage procedure (using a weighted average of study MLEs for the di¤erence in

means with weights equal to the inverse variance of the MLEs) provided a very poor approximation

compared with the approach of this thesis - see especially Example 5:3. This occurred primarily

due to the allowance in uncertainty in the within study scale parameters in the approach of this

thesis and the range of individual MLEs. It is a good demonstration that quadratic approximations

for all studies need to be close enough in the area of the maximum of the combined likelihood for

the combined likelihood to be approximately quadratic and not just near the individual study

MLEs. On the other hand if one entertains a Normal � Normal random e¤ects model, the

individual MLEs are more likely "to be local" (the total variance is in�ated to help ensure this) -

but the approach of this thesis with the initially entertained robust variance adjustment resulted

in a very di¤erent, almost multi-modal, log-likelihood. In fact, in some cases with multi-modal

log-likelihoods the robust variance adjustment from Sta¤ord resulted in a more concentrated multi-

modal log-likelihood.

This can easily be seen in the following plot of a �ctional example where the Normal�Normal

random e¤ects log-likelihood is plotted along with the �xed e¤ect log-likelihood, as shown in Figure

2. The �ctional data is comprised of two single group studies with exactly the same sample sizes

and observed within study variances. The pro�le Normal�Normal random e¤ects log-likelihood

for the mean is seen to be unimodal with t-distribution like tails, whereas the pro�le �xed e¤ect

log-likelihood for the mean is seen to be bimodal with a "batman" like shape - a simple rescaling

of the �xed e¤ect log-likelihood by a constant cannot possibly bring these two likelihoods close

together. As the robust approach needs to work for the Normal � Normal model, something
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Figure 2: Fictional example to demonstrate potentially very di¤erent pooled log- likelihoods:
Normal-Normal (circles) versus Robust (solid line)

"wrong" with the pro�le likelihood-based robust variance adjustment was discovered. On the other

hand, David Andrews recently conjectured in his 2006 Statistical Society of Canada Gold Medal

address, that if one will settle for just a 95% con�dence interval - not a nested set of intervals

but just that one in particular - there may be some "hope" for the robust approach of having

approximately correct coverage. A simple simulation of multiple studies under Normal�Normal

random e¤ects assumptions ruled this out for Sta¤ord�s adjustment (the adjustment actually made

the coverage worse) but returning to an earlier adjustment referred to in O�Rourke as Fisher�s

robust adjustment[83], 93% coverage was obtained. This remains as future research. In any event,

the widely accepted convention[24] of treating within study variances as known, and estimated with-

out error is seriously misleading for �xed e¤ect meta-analysis and even occasionally misleading for

the Normal �Normal random e¤ects model[119].
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1.5 Summary

By viewing much of the theory and techniques of parametric likelihood as being the investigation

and synthesis of what is possibly common in observations, meta-analysis is seen to be parametric

likelihood applied when what is observed are study summaries. Here, commonness of something

(replication of the studies) is both of central concern and to some degree always suspect (or at

least much more suspect than replication between observations within a given study). With an

explicit probability model for the generation of outcomes within studies, with due consideration

of what parameterization is most appropriate, common parameters or common distributions of

parameters are entertained, which give rise to multivariate observed summary likelihoods for each

study, based on exactly whatever summaries are available in those studies. Likelihood regions just

for 
(�) (the something that is possibly common) can be formed that indicate which values of the

various parameters made the observations more probable than other of values. Pro�le likelihood

provides a means to focus in on particular parameters of interest. The issue of the acceptability of

pro�ling out all nuisance parameters needs to be addressed. There are actually two issues here - the

loss of between study information on common nuisance parameters if the multivariate optimization

is not feasible and univariate optimizations are used, and possible Neyman-Scott di¢ culties. For

the �rst, it is simply a numerical challenge. For the second, a diagnostic was considered to help

identify problematic cases and this "Neyman-Scott diagnostic" o¤ers some assurance that this will

be satisfactory but remains as future research.

In principle, this observed summary likelihood can be adjusted to take into account possible

selection rules for the summaries reported[33]. Exactly what to do with this adjustment is not

straightforward, but sensitivity analysis, rather than adjustment, may be more sensible[22]. Alter-

natively, a more formal Bayesian approach with informative priors on parameters for which there is

little to no sample information may provide a more perceptive, or at least quantitative, sensitivity

analysis[60].

In summary, perhaps the only real di¤erence between meta-analysis and usual statistical appli-

cations involving a single study are the heightened concern about commonness, the real possibility

of multi-modal and very non-quadratic combined log-likelihoods given assumptions of commonness

or commonness in distribution, the forced marginalization of the likelihoods due to the reporting

of summaries rather than raw data, and a possible need to adjust the observed summary likeli-

hood for informative selection of summaries reported. (Especially, if p-value based censorship is
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considered an extreme form of marginalization to no reporting at all.) Issues such as the quality

of studies[61] that seem more relevant in meta-analysis than in individual studies perhaps simply

re�ect the lack of commonness of quality of studies versus quality of observations within a study.

In this thesis, though, the situation of uniformly high quality randomized clinical trials is being

addressed. In principle, extensions to more realistic situations are available by the inclusion of

various bias parameters in the likelihood and perhaps even using prior distributions for the bias

parameters [60].

The descriptively appealing and transparent model-based statistical basis in this thesis may

minimize or even eliminate the di¤erences perceived between meta-analyzing continuous versus

discrete outcomes. It provides an obvious method for dealing with mixed discrete and continuous

outcomes (i.e. same outcome sometimes reported on as percentage that fell above a given cut

point and sometimes by summaries like the mean and variance) by using the observed summary

likelihood from continuous outcomes given the discrete summary actually observed. It suggests that

summaries (for groups or group di¤erences) are neither necessary nor recommendable in statistics

nor meta-analysis. Although some dimensionality reduction may be required to get con�dence

or credible intervals via Classical or Bayesian inference, any summarization before this implies a

loss of information (under model uncertainty) and should be avoided. This becomes very clear

once one considers alternative assumptions for generating the summaries that were reported - for

some assumptions the summaries are su¢ cient and the original (and observed summary) likelihood

is immediately available - while for other assumptions the original likelihood is unavailable and

perhaps the observed summary likelihood intractable and simulation remains the only alternative.

Something immediately available from the outcomes (a comparison of di¤erent likelihoods under

di¤erent assumptions) is lost with summarization.

It encourages a more explicit search for, and wider consideration of, what is common between

studies and perhaps encourages the choice to be much �ner - i.e. just direction of treatment

e¤ect rather than both direction and magnitude. Magnitudes can then be treated as arbitrary

and pro�led out. It o¤ers a straightforward means to investigate the sensitivity of conclusions to

di¤ering probability assumptions (i.e. robustness - at least in the sense of Barnard�s conditional

robustness - for the data set observed, did the assumptions matter?) as well as assumptions

about informative choice of di¤ering summaries and/or incomplete summaries in various studies

(although what to do when inference is sensitive to these possibilities is not straightforward).
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Hopefully, it will help clarify where robust based random e¤ects models can be safely used -

essentially quadratic study combined log-likelihoods with random e¤ects distributions where the

expected value of the �xed e¤ect MLE remains relevant. Here, the true (but unknown to us)

random e¤ects log-likelihoods di¤er from �xed e¤ect only by their maximum and curvature - so

only the maximum and curvature are wrong. Now, the expectation of the "wrong" maximum is

relevant and correct (because the expected value of the MLE under the random e¤ects model

"happens" to be equal to the expected value under the incorrect �xed e¤ect model) albeit it

is ine¢ cient. Additionally, the curvature of the �xed e¤ect log-likelihood is too large, but the

robust adjustment replaces the wrong curvature with an estimate that, albeit again ine¢ cient, is

consistent. If we were certain as to the correct random e¤ects model, there would be little to no

reason not to use it (given the envelope numerical integration bounds made available in this thesis).

It is this lack of certainty of a given model as being approximately true, or even the presence of

very good reasons to believe it is false, that suggests the robust random e¤ects would have been the

"least wrong" random e¤ects model[83]. Unfortunately, unknown scale parameters can lead to very

non-quadratic pro�le likelihoods in regions of importance, and a wrong �xed e¤ect log-likelihood

cannot be simply remedied by replacing the curvature estimate. In the preceding plot, a possible

meta-analysis with two studies contrived to illustrate this under Normal �Normal assumptions

was displayed - which shows that the random e¤ects pro�le log-likelihood for the common mean is

very di¤erent from the �xed e¤ect pro�le log-likelihood which is bimodal there.

Additionally, the thesis will highlight clearly the value of randomization (by removing the

need to consider and model between group nuisance parameters that likely are rather di¤erent

for each study) and clari�es the principle of "as randomized" analysis (i.e. not marginalizing

over nuisance parameters such as the control rate which may well have varied markedly by study,

but estimating, pro�ling or conditioning them out). It provides a framework for meta-analysis

of multiple parameters as well as adjusting for multiple parameters (i.e. regression, change from

baseline) and for meta-epidemiology (analysis of meta-analyses) - in fact - practically anything

that can be done with likelihood methods.

1.6 A preview of the sections

Chapter 2 surveys parametric likelihood-based statistical theory in terms of single observations as

multiple sources of evidence "on their own", the evaluation of their con�ict or consistency and their
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combination. Here, the claim is not that statistics is meta-analysis, but that it in many (helpful)

senses, can be viewed as being so. Here, how the individual observations within a study can stand

on their own as statistical elements (though not necessarily independent of the other observations)

and how to study, contrast and combine these individual statistical elements via likelihood will be

explicated. This focussed look at the investigation and synthesis of individual observations casually

de�nes some familiar likelihood-based statistical techniques. A strategy that then emerges from

this exercise is to start with the consideration of parameters for individual observations, one at a

time, and discern which components are common, common in distribution or arbitrarily di¤erent

across individual observations. Given this, it is then decided which parameters are to be to focused

on as interest parameters, and which are to be ignored as nuisance parameters that are somehow to

be evaded. Likelihood-based methods are then reviewed as a partially successful, but not generally

successful, way of doing this. Later, when studies are considered rather than individual observa-

tions, it will be argued that for most meta-analysis problems, likelihood-based methods are widely

successful. A diagnostic technique will initially be considered to help check that such is the case

in particular meta-analyses. Chapter 3 provides a short historical overview on the consideration

of multiple sources of evidence, their individual evaluation, the evaluation of their con�ict or con-

sistency and their combination starting in 1778 and ending with the author�s early experience in

meta-analysis of clinical trials in the 1980�s. This chapter suggests that statistical theory should

be easily relatable to meta-analysis as some of its roots were there - combining observations from

di¤erent experiments was, in fact, the objective in much of the early development of methods of

statistical inference. Chapter 4 addresses the question of what meta-analysis of randomized clinical

trials is, or should be. It provides a sketch of the di¤erences (perhaps more apparent than real)

between analysis of single and multiple studies and a brief overview of issues that arise in the

consideration of reported summaries from studies perhaps selectively and incompletely reported

in clinical research. Then it gives a very brief sketch of what is believed to be the current "com-

monly accepted" statistical approach to meta-analysis in clinical research. Chapter 5 implements

the approach of the thesis in the setting of both single-group and two-group randomized studies

by using various examples. Some of the examples involve mixed reporting of outcome summaries,

where some studies reported treatment group means and variances, and others some combination

of treatment group minimums, means, medians, maximums and variances. Chapter 6 summarizes

the main �ndings as well as pointing out areas requiring further work.
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2 Investigation and synthesis of observations

2.1 Introduction and background

In this section, a closer look at the investigation and synthesis of individual observations via likeli-

hood, then pairs of individual observations and �nally batches of observations will be undertaken.

This section suggests statistics is meta-analysis or at least, it is worthwhile to try to view statistics

as such. Essentially, individual observations (or pairs or batches of observations) are treated as

if they are di¤erent studies. The �ndings for individual observations are admittedly somewhat

uninteresting, being perhaps very much like reviewing set operations on null sets. A number of

statistical examples (without data) are worked through in appendix C. The main purpose is to

carry through parametric likelihood inference, or at least calculations for single observations (as

well as pairs and batches of observations), to provide insight into individual evidence assessment,

evaluation of con�ict and combination for something common rather than develop de�nitive indi-

vidual observation inference methods. With only single observations, there certainly are apparent

and real limitations and no attempt was made to fully identify and resolve these. These limitations

are known to persist even with a single batch of observations (i.e. in the usual statistical setting

or context), and have not yet been adequately resolved[25]. Also, Sprott commented that Fisher

many times expressed the view that in inductive inference comparatively slight di¤erences in the

mathematical speci�cation of a problem may have logically important e¤ects on the inferences

possible - e.g. common ratio versus common di¤erence in paired data[110].

In any given single study with repeated observations, acceptance that the individual observa-

tions have something in common should not be automatically and uncritically assumed. To suggest

that the need to evaluate commonness of observations is not usually addressed in the statistical

literature would be misleading - for instance the simple scatter plot does this. However, less explicit

thought does seem to have been given to what the observations support "individually" �loosely

speaking - individual observation inferences and explicit investigation and synthesis of these. One

author who did this, at least with respect to de�ning individual elements that could be combined

to get the usual linear summary based statistical techniques, was Pena[93].

Pena claimed that thinking about statistics used in single studies as a combination of esti-

mates based on individual observations may very well make statistical theories and techniques

more transparent. Pena did single observation inferences using generalized least squares and Pena
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suggested that this was a useful way to understand common statistical techniques. For this thesis,

a parametric likelihood approach seemed much more suitable. Pena did not consider a likelihood

approach and has not done further work on this topic since (personal communication, 2002).

Now many, if not most techniques in applied statistics are based on or are closely related to

the likelihood[9]. Barndor¤-Nielsen[8] states

�Likelihood is the single most important concept of statistics." and further states it is
mainly just the relative likelihood - "We are almost always interested only in relative
values of the likelihood at di¤erent values of �."

Why the likelihood is so useful in developing statistical techniques - in fact so useful as to

eliminate the need for any other aspect of the observations - has been the subject of a long literature.

Essentially, under an assumed model, the likelihood captures all "useful inputs" for statistical

procedures. Hald made the following perhaps cryptic comment on the likelihood being su¢ cient

� �which is self-evident in view of the fact that it is a combination of the given (independent)

observations and the hypothetical parametric model�. Pace and Salvan[89] suggested su¢ ciency as

a basis to restrict one�s attention to relative likelihood values as they are su¢ cient. More formally,

the distribution of any statistic conditioned on the observed relative likelihood is independent of

the parameters (in the assumed model) - and hence they can provide no further �information�.

The relative likelihood is therefore su¢ cient given the assumed model - in fact, minimal su¢ -

cient (i.e. a function of any other su¢ cient statistics - see page 339 Fraser[53]) . Disagreements

do arise though as to what is su¢ cient in a given problem, for instance that between Fisher and

Bartlett, with Fisher considering s2 a being su¢ cient for �2 in the absence of knowledge about �

and Bartlett formally considering s2 + (y � �)2 (see Barnard[5]).

2.2 Groups of single observations

2.2.1 Combination given a common parameter

The likelihood is the probability of the observations for various values of the parameters and

will be denoted as c(yi) Pr(yi; �i), where Pr is the assumed probability model that generated the

observations, the observations are taken as �xed and the �parameter� �i is varied. The generic

positive constant function c(yi) emphasizes that only relative values are of interest in applications,

with variable yi to indicate a possible dependence of this on yi. Fraser avoids the direct use of a

generic positive constant by formally de�ning the likelihood function as an equivalence class[54].
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The �i with subscript i in the likelihood emphasizes that the parameters or some components of

them may well di¤er by observation. A more formal de�nition of likelihood is that it is simply a

mathematical function

L(�i; yi) = c(yi) Pr(yi; �i)

The formal de�nition as a mathematical function though, may blur that the likelihood is the

probability of re-observing what was actually observed. In particular, one should not condition

on something that was not actually observed such as a continuous outcome, but instead some

appropriate interval containing that outcome (i.e. see page 52 of Cox & Hinkley[28][6]).

Now, the likelihood for a single observation is an �individual observation statistical element�

in that the function is de�ned with just a single observation as c(yi) Pr(yi; �i). Trivially, from

the de�nition of likelihood as the probability of re-observing the outcome that was observed, for

any given allowable combination of values of the parameters, the probability of re-observing the

outcome that was observed is de�ned. Now if the observation itself is not de�ned in the probability

model for some parameter values, the probability of that observation must be zero by the rule of

total probability. See also Little and Rubin[75] where this is dealt with in terms of a natural

parameter space - the set of parameter values for which Pr(y; �) is a proper density.

Given there is more than one individual observation likelihood and as they are probabilities,

they multiply. For a probability model for a single outcome that involves only a scalar parameter

denoted Pr(y:; �:), recall that

Pr(y1; y2; �1; �2) = Pr(y1; �1) � Pr(y2jy1; �1; �2) = Pr(y2; �2) � Pr(y1jy2; �1; �2)

and simply

Pr(y1; �1) � Pr(y2; �2)

for independent observations. Re-emphasized as likelihoods

L(�1; �2; y1; y2) = L(�1; y1) � L(�1; �2; y2jy1) = L(�2 ; y2) � L(�1; �2; y1jy2)

and

L(�1; y1) � L(�2; y2)
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If some parameter in the probability models used to represent each of the observations is common,

then there is a combination for that parameter simply by that multiplication. With a common

parameter reparameterization ! = !(�1; �2) = (
; �); where 
 = 
(�1; �2) (the something that

is possibly common) and �i = �(�1; �2)i and conversely, �1 = �1(
; �i) and �2 = �2(
; �i), the

multiplication for independent observations gives

L(
(�1; �2); �(�1; �2)(1;2); y1; y2) = L(
(�1; �2); �(�1; �2)1; y1) � L(
(�1; �2); �(�1; �2)2; y2)

versus

L(�1; �2; y1; y2) = L(�1; y1) � L(�2; y2)

with no common 
(�1; �2) and for dependent observations gives

L(
(�1; �2); �(�1; �2)(1;2); y1; y2) = L(
(�1; �2); �(�1; �2)1; y1)�L(
(�1; �2); �(�1; �2)1; �(�1; �2)2; y2jy1)

versus

L(�1; �2; y1; y2) = L(�1; y1) � L(�1; �2; y2jy1):

with no common 
(�1; �2): In these last two cases the combination is apparent for �(�1; �2)1 in

�rst case and �1 in the second case, given the dependence between y1 and y2 there is information

about either �(�1; �2)1 or �1in y2. For parameters that are not common, the multiplication results

in a product space for them and not a combination of them - with only separate parameters for

each observation. Multiplication then is �the�way to combine individual observation likelihoods

that have something in common.

The main point here is that the likelihood is de�ned for single observations (no matter how

uninteresting) and the likelihood of all the observations is some multiple of these - so we automat-

ically have individual observation statistical elements for common parameters that, in some sense,

stand on their own, so that they can be assessed for commonness and, if common, combined simply

by multiplication. For instance, with binary observations when the parameter � is a scalar - with

no covariates or knowledge of order of observations - the likelihood equals either � or (1� �) as the

observation was a success or a failure. With these likelihoods, there is no means to assess whether

or not � was common. But as is shown in appendix C, they do �automatically�provide individual

observation statistical elements for individual observation inference and a means for their formal
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investigation and explicit synthesis. In general, the standing �in some sense on their own�can be

very weak for vector parameters �.

2.2.2 Combination given a common distribution of a parameter

The combination of individual observations that just have the distribution of parameter(s) in

common rather than a common parameter is not so straightforward because the unobserved random

parameters are not common but di¤er, the multiplication of the L(�i; yi) would initially result in a

product space for them not a combination of them. But as these now considered random parameters

are not observed, perhaps they should be marginalized over and if so, the distribution only involves

the parameters of the higher level distribution[16]. That is

LMp(�i; yi) = Ep(��
i
)[L(�

�
i ; yi)] =

Z
L(��i ; yi) � f(��i ; �i)d��i

where �i represents the parameters of the level 2 distribution (recall the de�nition in introduction),

where the subscript indicates that the parameter components may well di¤er also by observation

in this level 2 distribution. The superscript Mp in LMp indicates that the likelihood is marginal

over the parameter where the parameter has a physical probability distribution associated with

it. Some authors such as Bjornstad[13] and Berger[12] strongly argue for integrating out the

parameter in this case but the acceptance of these arguments may not be universal - for instance

see Lee and Nelder[74] and then Little and Rubin for direct criticisms of Lee and Nelder[75]. This

will be further discussed in the appendix, but acceptance of
R
L(��i ; yi) � f(��i ; �i)d��i simpli�es

many issues that arise in this thesis. It is necessary to distinguish this from the case where the

probability distribution associated with the parameter is simply conceptual or Bayesian, and for

this

LI(�i; yi) = Ep(��
i
)[L(�

�
i ; yi)] =

Z
L(��i ; yi) � f(��i ; �i)d��i

will be used and for the special case of assuming a (possibly improper) uniform distribution for

the parameter,

LIu(�i; yi) =

Z
L(��i ; yi)d�

�
i

will be used and called respectively, the integrated and uniform integrated likelihood. Of course,

these all have to be distinguished from the marginal over the sample likelihood, and this will be

called the observed summary likelihood.
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In the level 2 distribution f(��i ; �i) the parameter(s) �i could have common components and

for simplicity say this applies to all of them and so �i can be replaced by � and the multiple of

these marginal likelihoods LMp(�; yi) =
R
L(��i ; yi) � f(��i ; �i)d��i does provide a combination for

�. Here the multiplication is after the integration and under assumptions of independence of the

"sampling of random" parameters � is simply

kY
i=1

Z
L(��i ; yi) � f(��i ; �)d��i

Here we are dealing with single observations drawn from the distribution with a given "sampled"

parameter - when we move to dealing with pairs or groups of observations - i.e. multiple obser-

vations drawn from the distribution with a given "sampled" parameter, the probabilities of the

individual observations with a given "sampled" parameter must be multiplied prior to the integra-

tion to get the marginal distribution for the pair or group. Furthermore, as pointed out earlier,

there is more than one target for estimation �the common parameter � of the higher level distribu-

tion and the di¤ering unobserved random parameters ��i that generated the individual observations

yi but in most clinical research based on randomized trials, it is the common parameter that is of

almost exclusive interest[15]. For completeness, although it will not be of concern in this thesis,

for inference on the unobserved random parameters ��i , L(�
�
i ; yi) is combined with the estimated

higher level distribution f(��i ; �̂) by analogy with the combination of a known distribution with a

likelihood by Bayes theorem - i.e. f(��i ; �̂)L(�
�
i ; yi) - for instance see page 83 of Casella[16]. Given

this need for random e¤ects models with unobserved random parameters, we brie�y discuss special

likelihood issues that some consider important when there are unobserved random components in

the level 1 likelihood under the topic "generalized likelihood" in appendix B.

This focussed look at the investigation and synthesis of individual observations via likelihood

casually de�nes some familiar likelihood-based statistical objects and concepts such as the deviance,

deviance residuals, estimated likelihood, pro�le likelihood, marginal likelihood, etc. A possibly

e¤ective strategy that emerges from this exercise is to start with the consideration of parameters

for individual observations (or pairs or batches), one at a time, and discern which components

are common, common in distribution or arbitrarily di¤erent across individual observations - then

decide which parameters to focus on, and which to ignore, by treating them as nuisance parameters

that are somehow to be evaded. This strategy is then seen as one way to motivate and reconstruct

techniques in statistics for a single batch of observations. Here the inference limitations with a single
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batch of observations (i.e. the usual statistical setting or context) are unavoidably encountered and

explicated using Fisher�s three classes of problems in statistics: problems of speci�cation, inference

and distribution.

The strategy of considering parameters for individual observations one at a time, and discerning

which components are common, common in distribution or arbitrarily di¤erent across individual

observations is seen to be an integral of part of the problem of speci�cation - identi�cation of an

appropriate statistical model for the observations being investigated. Likelihood is one general

method of estimation to "solve" the problem of inference and that method is chosen for this thesis.

The further elaboration of the problem of inference in deciding which parameters to focus on, and

which to ignore by treating them as nuisance parameters, then attempts to align this "general so-

lution" to a more particular inference interest and estimated likelihood, pro�le likelihood, marginal

likelihood, etc. are seen as partially successful but not generally successful techniques for doing

this. The problem of inference also includes indications of goodness of �t for the speci�ed model.

Perhaps somewhat wider than Fisher anticipated, in a Bayesian approach it should also include

the evaluation of con�ict between prior and data. Box con�ated both goodness of �t and prior

data con�ict in his approach to model checking. It is here suggested that this should be kept sep-

arate as does Evans[44] and it is further suggested that goodness of �t be further separated (when

possible) into common parameter con�ict and lack of �t given arbitrary (rather than common) pa-

rameters (i.e. could the model �t with arbitrary parameters?). The problem of distribution then

remains, given the speci�cation and inference, but this is now solvable in principle by Monte-Carlo

simulation for most, if not all, meta-analyses of randomized clinical trials[30].

This is model-based statistics, and as some[55] have argued for in the context of investigating a

single batch of observations, is the way statisticians should think and act. This thesis argues that

statisticians should think about investigating multiple studies or meta-analysis in the same manner.

The target output being a "set of intervals the end points of which, taken as a whole, reproduce the

likelihood function, and which in repeated samples have the constant coverage frequency property

that de�nes con�dence intervals"[110]. Instead, some statisticians restrict their thinking and acting

to "safe" subsets of model-based statistics (e.g. linear models or generalized linear models) and

thereby both avoid particular inference interest problems (at least for large sample sizes) as well

as perhaps the explicit working out of the speci�cation, inference and distribution aspects of their

application. The lack of appreciation of the value of an explicit working out of the speci�cation,
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inference and distribution aspects is perhaps encouraged by the fact that in wide generality in

applied statistics, weighted least squares with empirically estimated weights can be constructed

to adequately approximate pretty much any model-based statistical approach, given reasonable

sample sizes of groups of independent observations. These are often confused as linear models or

generalized linear models, but often violate the underlying assumptions.

On the other hand, some largely avoid the problem of particular inference interests by accepting

any convenient prior distribution (perhaps very poorly motivated and even improper) which then

allows the other parameters to be integrated out for particular inference interests (still marginality

problems can arise[34]). Some even then try to dissuade statisticians of thinking or acting via

model-based statistics unless they assume such particular priors[39]. That particular priors lead

to joint distributions of parameters and data that allow the application of probability calculus to

directly arrive at conditional and marginal probabilities is extremely convenient, but the salience

of the inference then largely rests with how salient or helpful those particular priors are believed

to be. Sensitivity analysis on a range of priors (and data models) would seem to be required and

this may not be as straightforward as some of the current literature suggests[73].

For most meta-analysis problems, the particular inference interest problems encountered with

pro�le likelihood (further discussed later) will likely not be of practical importance for most model

speci�cations currently considered. A diagnostic technique was brie�y considered to help check

whether such is the case in particular meta-analyses and remains promising future research. The

only real challenge then that remains, is with the speci�cations considered. For instance, which

parameters are common and if not common, what is the appropriate speci�cation of the form of the

common distribution? Given the speci�cation of the common distribution, the level 2 distribution

arises as a problem of distribution and here it is solved by a systematic sample with known errors

(i.e. numerical integration with valid lower and upper bounds). Additionally, many, many nuisance

parameters may be involved in an adequate speci�cation relating to publication bias, randomization

assignment unblinding, di¤erential loss to follow up, etc. It would seem reasonable to worry about

this over the particular inference interest problem discussed above and this is simply not resolvable

at present. Some recourse is achievable via sensitivity analyses with[60] or without[22] the use of

prior information.
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2.2.3 Lessons from single observation inference and a suggested graphical display

In appendix C, it has been shown that it is possible to de�ne estimated or pro�le likelihoods that

allow one to "individually" assess and combine single observations for a chosen parameter of focus

or interest. A somewhat informal approach was taken in calling them likelihoods - they do not,

however, correspond to the de�nition of likelihoods as being the probability of re-observing what

was observed given various probability models. The evaluation of con�icts is also problematic -

i.e. the deviance was not always helpful for assessing commonness. Also, the parameters might

be highly related in that these estimated or pro�le likelihoods for a given observation may depend

highly on the other observations that were combined to get estimates of the other parameters, and

the word "individually" should not be taken as suggesting independence.

An expository example will be provided below involving an actual data set to show how to get

individual observations likelihoods so that they may be assessed, compared and combined. This

could have simply been accomplished by taking one parameter at a time and replacing all the

others by their values in the joint MLE using all the observations, then calculating the likelihood

for each observation with the now single unknown parameter. Instead the second route used in the

Normal(�; �2) example in the appendix of pro�le likelihood was taken. Here again, one parameter

at a time is taken, but for a reasonably possible range of values of that parameter the MLE of

the other parameters is calculated given each value in that range. To calculate the likelihood for

one observation then, there is only one unknown parameter but for each value of that unknown

parameter the MLEs of the other parameters change to the joint MLE under that value. This was

done numerically rather than in closed form, as it can easily be programmed as a Generalized Linear

Model, in S-Plus. With the experience gained in this thesis, it would now be computationally more

straightforward to use the full data set to obtain the pro�le likelihood path (values of all nuisance

parameters that give the pro�le likelihood along the range for the variable of interest) and then

simply plot the individual log-likelihoods along that path. A plot to make the addition of the

individual log-likelihoods, as used in the later examples, would also be preferable.

The example was inspired by a paper entitled "There are no outliers in the stack-loss data" by

J. A. Nelder[80]. In this paper, it was suggested that with the right [probability] model, there were

no outliers in the stack-loss data. The stack-loss data set apparently has been used in 90 distinct

papers and books on multiple linear regression and there is a loose sense of agreement about

observations 1; 3; 4; and 21 being outliers, but the union of all sets of outliers found by various
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authors contains all but �ve of the 21 observations. Nelder chose a gamma-log link generalized

linear model, and with selection and recoding of predictor variable found that the residuals were

"no longer outliers, but merely close to the expected extremes". This invited a look at whether

the individual likelihoods all supported something in common - i.e. examine what the individual

likelihoods suggest and whether these con�ict. Informally, individual likelihood plots did con�rm

Nelder�s claim. For a better demonstration though a model where there were clearly outliers and

where some con�ict could be expected was chosen. For this, an earlier model that Nelder had

chosen for his comparison from Draper and Smith which simply involved Normal linear regression

with two predictors was used. The result is shown in Figure 3.

This graphical method for assessing the commonality of parameters is an extension of the

method of locating several outliers in multiple-regression, using elemental sets[64] to single ob-

servations as opposed to sets of observations of size p. (Elemental sets of size p are the smallest

set of observations that will allow consistent estimates of p parameters). All possible such sets

need to be formed and investigated. It is also distinct from the graphical method for assessing

the �t of a logistic regression model by Pardoe[91] which is based on Box�s global approach to

joint model �t (prior and data models). The method here focuses directly on data model �t and

just the commonality of parameters, rather than a mixture of commonality of parameters and

shape. Whether parameters appear common or not depends heavily on shape - what appears as

common with heavy tailed distributions will appear non common with a light tailed distribution.

If the distributional assumptions are �xed and one focuses on likelihoods under those assumptions

(recall the likelihood is minimal su¢ cient) one is focusing on commonness. Hence, it supports the

emphasis in this thesis on a strategy of considering parameters for individual observations, one

at a time, and discerning which components are common, common in distribution or arbitrarily

di¤erent across individual observations.

2.2.4 Tibshirani and Efron�s "Pre-validation" - a non-meta-analysis example of the

value of viewing parametric statistics as the combination of single observations

At the 2003 Joint Statistical Meeting in San Francisco, Robert Tibshirani gave a talk entitled "Pre-

Validation and Inference in Microarrays", joint work with Bradley Efron, in which he reported on

work from their earlier paper[117]. The abstract (which was the same for both the paper and talk)

was as follows -
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Figure 3: Individual observation log-likelihoods - Stack Loss Data
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�In microarray studies, an important problem is to compare a predictor of disease
outcome derived from gene expression levels to standard clinical predictors. Comparing
them on the same dataset that was used to derive the microarray predictor can lead
to results strongly biased in favor of the microarray predictor. We propose a new
technique called "pre-validation" for making a fairer comparison between the two sets
of predictors. We study the method analytically and explore its application in a recent
study on breast cancer.�

The new technique called "pre-validation" had been intuitively motivated and their work in-

volved a more rigorous evaluation of its properties - in particular determining if the degrees of

freedom for the microarray predictor using the pre-validation technique were correct. Both in the

talk and the paper, an alternative method was �rst described as the usual k-fold cross-validation

approach, where the microarray predictor and clinical predictor were compared on subsets of data

that omitted data on which the microarray predictor was developed, and then these comparisons

on subsets were averaged (unweighted) in the paper and "somehow to be combined" in the talk.

When asked about the "somehow to be combined", Robert Tibshirani made it clear that likeli-

hood combination had not been considered. The approach of this thesis though does suggest the

consideration of likelihood combination as outlined below.

First, the details from the paper are convenient to quote and provide a concise summary -

�The microarray predictor was constructed as follows:

1. 70 genes were selected, having largest absolute correlation with the 78 class labels

2. Using these 70 genes, a nearest centroid classi�er (described in detail in Section 6) was
constructed.

3. Applying the classi�er to the 78 microarrays gave a dichotomous predictor zj for each case
j.

It was of interest to compare this predictor to a number of clinical predictors ...

In order to avoid the over�tting problem ... we might try to use some sort of cross-validation:

1. Divide the cases up into say K approximately equal-sized parts

2. Set aside one of parts. Using the other K -1 parts, select the 70 genes having the largest
absolute correlation with the class labels, and form a nearest centroid classi�er.

3. Fit a logistic model to the kth part, using the microarray class predictor and clinical
predictors

4. Do steps 2 and 3 for each of the k = 1, 2, . . . K parts, and average the results from the
K resulting logistic models.

The main problem with this idea is step 3, where there will typically be too few cases to �t the
model. In the above example, with K = 10, the 10th part would consist of only 7 or 8 cases.
Using a smaller value of K (say 5) would yield a larger number of cases, but then might make
the training sets too small in step 2. Use of multiple random splits can help cross-validation
a little in this case.
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Pre-validation is a variation on cross-validation that avoids these problems. It derives a �fairer�
version of the microarray predictor, and then this predictor is �t along side the clinical predic-
tors in the usual way. Here is how pre-validation was used in the bottom half of Table 1[not
shown]:

1. Divide the cases up into K = 13 equal-sized parts of 6 cases each.

2. Set aside one of parts. Using only the data from the other 12 parts, select the genes having
absolute correlation at least .3 with the class labels, and form a nearest centroid classi�cation
rule.

3. Use the rule to predict the class labels for the 13th part

4. Do steps 2 and 3 for each of the 13 parts, yielding a �pre-validated�microarray predictor
~zj for each of the 78 cases.

5. Fit a logistic regression model to the pre-validated microarray predictor and the 6 clinical
predictors.�

Drawing from this thesis, the main problem identi�ed by Tibshirani and Efron with the �rst

method - "there will typically be too few cases to �t the model" - does not apply to likelihood com-

bination as likelihoods are de�ned for single observations (i.e. even "leave one out cross-validation"

is feasible). The real problem is deciding what (if any) combination is ideal or adequate. The mi-

croarray predictors (~zg(i)) from the k parts are di¤erent predictors and so the coe¢ cients for these

in the logistic regression almost surely would not be common. This would also make the coe¢ cients

for the clinical covariates non-common (given inclusion of non common microarray predictors as

covariates). If however, the likelihoods were given common coe¢ cients and multiplied (an incorrect

combination) one gets exactly the pre-validation technique. The pre-validation technique, being

an incorrect combination, should not be expected to have good properties. First some notation

will be useful.

Pre-validation is de�ned by Tibshirani and Efron, starting with an expression predictor z =

(z1; z2; :::; zn) which is adaptively chosen from the data X and y

zj = fX;y(xj)

where their notation indicates that zj is a function of the data X and y, and is evaluated at xj .

Rather than �t fX;y using all X and y Tibshirani and Efron instead divide the observations into

K roughly equal-sized groups, and denote by g(k) the observations composing each part k. For

k = 1; 2; :::K, Tibshirani and Efron form the pre-validated predictor

~zg(k) = fX�g(k);y�g(k)(xg(k)); for k = 1; 2; :::K
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where the notation indicates that cases g(k) have been removed from X and y. Finally, Tibshi-

rani and Efron �t the model to predict y from ~z and the clinical covariates c, and compare the

contributions of ~z and c in this prediction - i.e. the ~z = (~zg(1); ~zg(2); :::; ~zg(n)) are included with c

in a multivariate statistical model. In their particular example Tibshirani and Efron used a linear

logistic model

f

�
yj exp(�+ ~z� + c
)

1 + exp(�+ ~z� + c
)

�
:

Now the K within group linear logistic models with common parameters �; � and 
 are

f

�
yg(i)j

exp(�+ ~zg(i)� + cg(i)
)

1 + exp(�+ ~zg(i)� + cg(i)
)

�

and their multiplication together is

Y
g(i)

f

�
yg(i)j

exp(�+ ~zg(i)� + cg(i)
)

1 + exp(�+ ~zg(i)� + cg(i)
)

�
:

Now as the observations yj are considered independent in the linear logistic model

f

�
yj exp(�+ ~z� + c
)

1 + exp(�+ ~z� + c
)

�
=
Y
j

f

�
yj j

exp(�+ ~zj� + cj
)

1 + exp(�+ ~zj� + cj
)

�
and

f

�
yg(i)j

exp(�+ ~zg(i)� + cg(i)
)

1 + exp(�+ ~zg(i)� + cg(i)
)

�
=

Y
j2g(i)

f

�
yj j

exp(�+ ~zj� + cj
)

1 + exp(�+ ~zj� + cj
)

�
so

f

�
yj exp(�+ ~z� + c
)

1 + exp(�+ ~z� + c
)

�
=
Y
g(i)

Y
j2g(i)

f

�
yj j

exp(�+ ~zj� + cj
)

1 + exp(�+ ~zj� + cj
)

�

and it is clear that pre-validation is simply the multiplication of the likelihoods from cross-

validation.

Given that pre-validation is an incorrect combination of the cross-validation linear logistic

models, problems with its performance should be expected. Tibshirani and Efron did determine

that pre-validation did not provide the correct degrees of freedom, but did not report on the

performance of the unweighted average of the cross-validations.
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2.3 Groups of pairs of observations

The smallest sample size where realistic inference can arise - two observations with at least one

parameter in common (or common in distribution) is now addressed. Here real problems with

likelihood as a general estimation approach were perhaps �rst encountered (or at least written

about) by Neyman & Scott[81]. These have yet to be fully resolved in the literature and the

technical details are reviewed in appendix D. It is suggested that there are important lessons

from the Neyman and Scott examples for meta-analysis and, in fact, these examples were actual

meta-analyses from Astronomy.

In terms of combination of observations, the common means and arbitrary variance problem

arises in that the correct combination for the mean, on its own, is not quite known because it

depends on the variance and this is not well estimated. Given the assumptions of Normality if

one knew the relative variances, this could be �xed by multiplying the individual likelihoods by

the ratio of variances and then combining by multiplication. On the other hand, treating the

non-common variances as random variables changes the probability speci�cation to one where this

problem no longer remains �combination for the common mean is simply by the multiplication

of the marginal (over the unknown variances) likelihoods that involve just common parameters.

Of course, the mis-speci�cation of the random distribution of these non-common variances raises

additional if not more serious problems - the form of the distribution can be a quite problematic

nuisance parameter and sensitivity analysis both in Classical and Bayesian inference is highly

recommended.

In terms of combination of observations, the common variance and arbitrary means problem

arises in that in the full likelihood, the likelihood component for the variance depends on the

unknown value of the means � if the values of the means were known the correct combination

would simply be accomplished by the multiplication of the likelihoods given the true means. As

the likelihoods from a given pair vary for the unknown value of the mean and as they are believed

to have something in common about the variance, a combination of them is desired. As they are

likelihoods, a combination of probabilities is required and this requires a prior distribution for the

unknown value of the means. But by considering just the marginal observations of pair di¤erences,

there is only one marginal (over the sample) likelihood that does not depend on the mean (and

there is no loss of information) and a combination of it is immediate. Alternatively, treating the

means as random variables changes the speci�cation to one where this problem no longer remains �
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combination is simply by the multiplication of the marginal (over the unknown mean) likelihoods.

2.4 A strategy for appropriate analyses in general

The Neyman-Scott examples involved pairing, which essentially re�ects a strong belief that pairs

of observations have a parameter in common. This leads naturally to speci�cations of common

parameters by pair along with either arbitrarily di¤erent parameters across pairs or a common

distribution of parameters across pairs. Given this, the single observation inference is extended

to a more general setting, and the question "does it set out an appropriate analysis plan?" arises.

Gelman�s recently published paper[56] addressed the same question of appropriate analyses using

a di¤erent approach. Quoting from Gelman�s abstract

"Analysis of variance (Anova) is an extremely important method in exploratory and

con�rmatory data analysis. Unfortunately, in complex problems (for example, splitplot

designs), it is not always easy to set up an appropriate Anova. We propose a hierarchi-

cal analysis that automatically gives the correct Anova comparisons even in complex

scenarios. The inferences for all means and variances are performed under a model

with a separate batch of e¤ects for each row of the Anova table."

Essentially, Gelman identi�ed the analysis of variance with the structuring of parameters into

batches - a separate batch of e¤ects for each row of the table - and explicated an hierarchical mod-

elling approach that lead to conventionally correct analyses for some analysis of variance examples,

including splitplot designs. The same will now be attempted, but instead starting with individual

observations, and considering which parameters are common, common in distribution or arbitrarily

di¤erent, along with ways of focussing on parameters of interest while evading parameters that are

not of interest.

Gelman starts with two simple examples. First, a simple experiment with 20 units completely

randomized to 2 treatments, with each treatment applied to 10 units. The suggested analysis plan

is a regression with 20 data points and 2 predictors: 1 constant and 1 treatment indicator (or no

constant and 2 treatment indicators). This has 18 degrees of freedom available to estimate the

residual variance, just as in the corresponding one way Anova, that he accepts as being appropriate.

The single observation inference approach would specify 20 likelihoods, 10 with parameters (�c; �)

and 10 with parameters (�t; �): Note the common � over both groups and common �: within each
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group. Now by independence the likelihood is combined as

10Y
i=1

L(�c; �; yci)
10Y
i=1

L(�t; �; yti)

and reparameterized for common 
 = 
(�c; �t; �) = �t � �c; �c; � with � = �t � �c, is re-written

as

10Y
i=1

L(�c; �; yci)
10Y
i=1

L(� + �c; �; yti)

or without indicating the functional relationships between the parameters � and �c

10Y
i=1

L(�c; �; yci)
10Y
i=1

L(�; �c; �; yti)

A likelihood for � presumably would be of interest and the pro�le likelihood

10Y
i=1

L(�̂c� ; �̂�; yci)
10Y
i=1

L(� + �̂c� ; �̂�; yti)

would be used to focus on � while evading �c; �. With small sample sizes, modi�ed pro�le likelihood

may seem preferable, but the pro�le likelihood is just overconcentrated here and Monte-Carlo

calibration could correct this and would be needed to calibrate the modi�ed pro�le likelihood in

any event[92]. Gelman�s solution, as con�rmed in McCullagh�s comment that "it is the simplest

neoclassical procedure ... i.e. �rst to compute the variance components using residual maximum

likelihood ... and then to compute ... summary statistics", was to replace �̂� by the MLE from

the marginal over the sample likelihood (commonly referred to as the restrictedMLE). The result

is a quadratic log-likelihood with a �̂r slightly larger than �̂b�.
Next, Gelman considers a design with 10 pairs of units, with the 2 treatments randomized within

each pair. The corresponding regression analysis he suggests has 20 data points and 11 predictors:

1 constant, 1 indicator for treatment, 9 indicators for pairs, and, if you run the regression, the

standard errors for the treatment e¤ect estimates are automatically based on the 9 degrees of

freedom for the within-pair variance (by convention, he used the restrictedMLE for the estimation

of �). Alternatively, he could have used 1 indicator for treatment and 10 indicators for pairs. The

single observation inference approach would again specify 20 likelihoods, 10 with parameters (�j ; �)

(a di¤erent �j for each pair j) and 10 with parameters (�; �j ; �) (the same �j for within each pair
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j). Note within the pair j; by independence the likelihood is simply

L(�j ; �; ycj)L(� + �j ; �; ytj)

and by independence of pairs, and a common � and � the combined likelihood over pairs is

10Y
j=1

L(�j ; �; ycj)L(� + �j ; �; ytj):

A likelihood for � would presumably be of interest and possibly focussed on by the pro�le likelihood

10Y
j=1

L(�̂j� ; �̂�; ycj)L(� + �̂j� ; �̂�; ytj):

As in the �rst example, the same pro�le likelihood problems and solutions arise. But in this

example, one may wish to use the marginal (over the sample) likelihood-based just on the paired

di¤erences (for � not just �)

10Y
j=1

LMs(�; �; d) =
10Y
j=1

Z
ycj ;ytj :ycj�ytj=d

Pr(ycj ; ytj ; �; �j ; �)dy

or one might wish to consider the ��j as random and use

10Y
j=1

LMp(�; �; �; ycj ; ytj) =
10Y
j=1

Ep(�j)[L(�
�
j ; �; ycj)L(�; �

�
j ; �; ytj)]

=
10Y
j=1

Z
L(��j ; �; ycj)L(�; �

�
j ; �; ytj) � f(��j ;�)d��j :

The latter would likely be "wrong" for treatments randomized within pairs (see arguments later).

Now, for the same experimental setup, if the outcomes were binary, the pro�le likelihood

10Y
j=1

L(�̂j� ; ycj)L(�; �̂j� ; ytj)

would result in unconditional logistic regression with a known scale parameter but which is known

to be highly biased for �. On the other hand, with continuous outcomes, if the choice is to focus

on the common � rather than the common � (i.e. let � be arbitrary) and treat ��j and � as

nuisance parameters to be dealt with by pro�le likelihood the Neyman-Scott problem arises again.
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So the individual observation likelihood approach gives more explicit options and shows some as

poor or even unacceptable. Gelman concludes that the di¤erent analyses for paired and unpaired

designs are confusing for students, but argues in his approach they are clearly determined by

the principle of including in the regression all the information used in the design (perhaps using

an argument by "authority"). The individual observation likelihood approach suggests that it is

whether parameters are considered common, common in distribution or arbitrarily di¤erent along

with which parameters of interest are focussed on versus which nuisance parameters were evaded

and how, that determines an "appropriate" analysis. This also depends highly on the form of the

distributions assumed, as the last example clearly highlighted.

2.5 Summary

In this investigation and synthesis of observations, various challenges arose when dealing with mul-

tiple parameters, many of which could be nuisance parameters (which here includes the random

e¤ects in random e¤ects models). Quoting from Cox[25] page 171 "Numerous variants have been

proposed, many based on marginalizing or conditioning with respect to well-chosen statistics or

using ine¢ cient estimates of some components while retaining asymptotic e¢ ciency for the com-

ponents of interest. The incorporation of all these into a systematic theory would be welcome." In

this thesis, pro�le likelihood will be used for evading �xed nuisance parameters and the likelihood

curvature adjustment (details in appendix E) will be considered but rejected for evading random

nuisance parameters, except possibly for essentially quadratic combined log-likelihoods where the

expectation of the �xed e¤ectMLE is still considered relevant. Pro�le likelihood is known to have

poor properties in certain situations (i.e. the Neyman-Scott examples) and although these are un-

likely to arise in many meta-analyses where standard asymptotic results as reviewed on page 243

of Barndor¤-Nielsen[8] are likely to apply, a diagnostic to help ensure acceptable performance in

particular applications has initially been considered. Further considerations regarding "evasions"

of nuisance parameters and other statistical background issues are given in appendix F.
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3 Short history of likelihood for meta-analysis

3.1 Pre-Fisher

Meta-analysis, or at least the combination of observations �not necessarily made by the same

astronomer and or under di¤erent conditions�, �gured prominently in the initial development of

statistical theory in the 18th and 19th centuries[113][63][84]. There was a belief (or at least a

hope) that something could be gained from combining the observations however, exactly how the

observations should be combined to achieve exactly what gain was far from obvious. This spurred

the development of "Bayesian-like�methods that utilized the likelihood as a means of combining

observations and o¤ered justi�cations of this method of combination as providing the most �prob-

able� true value (though originally conceived somewhat less directly as the most probable error

of measurement made in the observations). The justi�cations though, were not as well formalized

and understood as current Bayesian justi�cations of, for instance, the most probable value of an

unknown parameter, given an explicitly known prior probability distribution for that unknown

parameter[63]. The confusion in the justi�cations in fact, was wide-spread before and some time

after Fisher�s thesis of 1912[46], when according to Hald, Fisher vaguely drew attention to some

of the di¢ culties. An exception may have been Keynes�1911 paper[70] which will be mentioned

below where the role of various assumptions was very clearly delineated.

Often, justi�cations of intuitively reasonable combinations that involved either the mean or

various weighted means of multiple observations were argued about and sought. In fact, the

early attempts to justify combinations based on �likelihood� were largely abandoned when the

mathematical analysis under the �primitive�probability models assumed for the observations was

found intractable at the time[63]. One early attempt was by Daniel Bernoulli in a 1778 paper

entitled �The most probable choice between several discrepant observations and the formation

therefrom of the most likely induction.�which was reprinted in Biometrika 1961[69].

In the English translation, most references to what was being combined in the paper were to

observations, but the term observers was also used - suggesting that observations were not highly

distinguished as coming from the same or di¤erent investigators/studies. In this he enunciated a

principle of maximum likelihood �of all the innumerable ways of dealing with errors of observations

one should choose the one that has the highest degree of probability for the complex of observations

as a whole.�He believed that the mean was a poor combination using intuitive arguments that
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observations further from the �centre� should be given less weight, except in the case where the

observations were believed to be Uniformly distributed - where he incorrectly (from a likelihood

combination perspective) believed all observations should be equally weighted.

He assumed a semicircular distribution and derived the likelihood function as

L =
nY
i=1

p
a2 � (yi � �)2

and tried to maximize L2 with respect to � but was unable to do this for more than 2 observations,

as it lead to an equation of the �fth degree. For just 2 observations, it was maximized by the mean.

For some numerical examples with 3 observations he noted that L2 was maximized by weighted

means. The idea of using a probability model to determine the best combination was de�nitely

there, and he did realize that the probability of individual independent observations multiplied to

provide the joint probability of the complex of observations. Interestingly, he actually used the

smallest observation as the origin i.e.

yi � � =
�
yi � y(1)

�
�
�
�� y(1)

�
which emphasizes the correction that needs to be added to y(1) - u� y(1) as the unknown. Unfor-

tunately for him, if instead of @L2=@u = 0 he had used @ logL=@u = 0 he would have found

X yi � �
a2 � (yi � �)2

= 0X yi
a2 � (yi � �)2

� �
X 1

a2 � (yi � �)2
= 0

�
X 1

a2 � (yi � �)2
=

X yi
a2 � (yi � �)2

� =
X yi

a2 � (yi � �)2
=
X 1

a2 � (yi � �)2
:

This shows that �̂ is the weighted average of the observations, the weights being the reciprocal of

the squared density, that is, increasing with the distance from �. It is also unfortunate that he did

not consider multiplying individual observation likelihoods assuming Uniform(u� h; u+ h) with

h known, as the mathematics is simple and the best combination involves only the most extreme

observations on each side of the centre �about the most di¤erent combination from the one he
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intuitively thought best in this case (the equally weighted mean which puts equal weight on all

observations).

Somewhat later, circa 1800, Laplace and Gauss fully investigated the multiplying of proba-

bilities of individual observations as the means of combination of observations given a common

parameter[84]. Laplace initially concentrated on the probable errors, and often speci�cally the

most probable error, given all the observations (and a more or less explicit assumption of a prior

uniform distribution on the possible errors). Gauss moved towards concentrating on the probable

values rather than errors and speci�cally the most probable value given all the observations (and

a very explicit assumption of a prior uniform distribution on the possible values). Gauss was also

perhaps the �rst with some real practical success. He reversed the reasoning that Bernoulli had

used earlier � rather than trying to establish that the mean is the best combination for some

�motivated by �rst principles� distribution, and he found the distribution for which �likelihood

multiplication�would determine that the best combination was the mean. According to Hald, he

did not check the distribution empirically[63].

In 1839 Bienayme had remarked that the relative frequency of repeated samples of binary

outcomes often show larger variation than indicated by a single underlying proportion and proposed

a full probability-based random e¤ects model (suggested earlier by Poisson) to account for this.

Here, the concept of a common underlying proportion was replaced by a common distribution

of underlying proportions. It is interesting that a random e¤ects model where what is common

in observations is not a parameter, but a distribution of a parameter, followed so soon after

the development of likelihood methods for combination under the assumption of just a common

parameter.

The 1911 paper of Keynes mentioned above, acknowledged and revisited Gauss�s derivation of

the Normal distribution as the only symmetric distribution whose best combination was the mean

and also investigated this for the median and the mode. Here, simply for interest in itself, the

result of the Normal distribution as the only symmetric distribution whose best combination is

the mean, is presented in modern form but following that given in Keynes�paper.

The assumption of a symmetric distribution obviously does not imply that

f (yi;�) = Be�(��yi)
2

:
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It is required to show that

nX
i=1

@
@�f(yi; �)

f (yi;�)
= 0 being equivalent to

nX
i=1

(�� yi) = 0

along with symmetry does imply this.

The most general form of
Pn

i=1 (�� yi) = 0 is
Pn

i=1 g (�) (�� yi) = 0, where g is an arbitrary

function of �. Assuming g (�) to be twice di¤erentiable, without loss of generality, one may write

g (�) = '00 (�). Since yi is arbitrary, the equivalence requires

@
@�f(yi; �)

f (yi;�)
= '00 (�) (�� yi)

or

log f (yi;�) =

Z
'00 (�) (�� yi) d�+  (yi) ;

where  (yi) is an arbitrary function of yi. Integration by parts gives

log f (yi;�) = '0 (�) (�� yi)� ' (�) +  (yi) :

Now, it is required that f (yi;�) be symmetric about �, i.e. invariant under y ! 2�� y. Thus

'0 (�) (�� yi)� ' (�) +  (yi) = '0 (�) (yi � �)� ' (�) +  (2�� yi)

or

2'0 (�) (�� yi) =  (2�� yi)�  (yi) :

Taylor expand  (2�� yi) about � = yi:

 (2�� yi) =  (yi) + 2 
0 (yi) (�� yi) + 2 00 (yi) (�� yi)2 +

1X
j=3

2j

j!
 (j) (yi) (�� yi)j ;

which results in

'0 (�) (�� yi) =  0 (yi) (�� yi) +  00 (yi) (�� yi)2 +
1X
j=3

2j�1

j!
 (j) (yi) (�� yi)j ;
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which simpli�es to

'0 (�) =  0 (yi) +  
00 (yi) (�� yi) +

1X
j=3

2j�1

j!
 (j) (yi) (�� yi)j�1 :

But '0 (�) is a function of � alone for arbitrary yi, which implies that  
00 (yi) = a constant along

with  0 (yi)� yi 00 (yi) = 0, which implies that  (yi) = ky2i . Then

'0 (�) = 2k� ) ' (�) = k�2 + C:

Substituting in the equation for log f ((yi;�)),

log f (yi;�) = 2k� (�� yi)� k�2 � C + ky2i

= k (�� yi)2 � C;

or

f (yi;�) = Aek(��yi)
2

:

Note that Z
f (yi;�) dyi = 1 ) k < 0:

Keynes� paper provides a good indication of the central role played by the combination of

observations in statistics prior to Fisher. Apparently though, only Keynes, Gauss, Laplace and

perhaps a few others were fully aware of the need for, and arbitrariness of, a prior distribution for

the probability justi�cations for the combination, and both Gauss and Laplace became at some

point uncomfortable with this and turned to sampling distribution-based justi�cations instead[63].

In particular, Gauss developed optimal combinations based on a restriction to unbiased linear

combinations of unbiased estimates (i.e. least squares or inverse variance weighted combinations).

This approach allowed for varying but known di¤erences in the variances of the estimates and

implicitly assumed the estimates and variance were uncorrelated so that weighted averages of

unbiased estimates would give unbiased combinations (which is, of course, trivially true for known

variances).

Somewhat later, based on Laplace�s expositions of his own and Gauss�s work, Airy made an

extension for the estimation of unknown variances in 1861[1]. He also made a related extension to
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Bienayme�s "random e¤ects model" by developing methods based on within day and between day

variances of observations to allow for imperfect but partial replication of independent estimates.

Consideration of the within day sampling errors had shown that in some applications, observations

on di¤erent days were not in fact replicating in the usual sense �they had larger variations than

would be expected from the within day sampling errors. It was conceptualized that there was some

unknown day error and that some allowance should be made for this.

The two-stage summary approach to meta-analysis used today is close to this approach, but

where the implicit assumption is often violated as, for instance, with e¤ect measures which are

slightly correlated with their variances.[65] Fisher though, as we will see below, returned to likeli-

hood (separated from the prior) and again provided arguments for likelihood multiplication as the

�best�basis for combining observations in the early 1900s. Pearson wrote an editorial on Airy�s

book[84] and Fisher, as a graduate student, either studied Airy�s book or related ones on the com-

bination of observations[63]. Pearson meta-analysed medical examples in the early 1900s, drawing

attention to opportunities suggested by the heterogeneous study outcomes. Fisher and Cochran

meta-analysed agricultural trials in the 1930s[49][19]. Fisher drew attention to the need to carefully

consider the reasons for less than perfect replications between trials (i.e. whether in fact it was

a treatment interaction with place and time or di¤ering measurement errors) and various ways of

dealing with it for di¤erent inferential purposes. It apparently is one of Fisher�s few publications on

random e¤ects models (private conversation with D. Sprott and J. A. Nelder). Cochran explicated

the full Normal � Normal random e¤ects model with a likelihood-based meta-analysis in 1937.

Further details are given in O�Rourke[84].

3.2 Early Fisher

In some ways, perhaps most interesting of all, Fisher in his 1925[47] and 1934[48] papers in which

he mainly developed his theory of statistics, thought through the issues of multiple experiments

when addressing the loss of information when summarizing data. In the 1925 paper, he points out

that if there is no loss of information in a summary (i.e. when there are su¢ cient statistics) then

the summary of two combined samples from the same population must be some function of the two

summaries of the individual samples without recourse to the individual observations from either

sample. He then concludes the paper with a section on ancillary statistics whose purpose was

de�ned as providing a true, rather than approximate, weight for combining the multiple individual

53



sample summaries.

In the case of a [small] number of large samples, he shows that the likelihood from all the

individual observations collected from all the samples can be recovered from the MLEs of the mul-

tiple individual samples via a weighted average of those MLEs with weights equal to the observed

information (second derivative of the log-likelihood evaluated at the MLE) of each individual sam-

ple. Essentially this is because, for large samples, the log-likelihoods are approximate quadratic

polynomials and their addition only involves their maximums (MLEs) and curvatures (observed

informations evaluated at the MLE essentially estimated without error and taken as known).

Following Hald[63] and using modern notation
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Since each of the estimates b�k is asymptoticallyNormal(�; 1=nI); the combination based simply
on the unweighted average � =

P
k
b�k=m would have variance 1=mnI. Note, however, that the

above combination recovers the likelihood from the full data and the b� from this is asymptotically

Normal(�; 1=l
00
(b�)).

The advantage is perhaps more easily seen in terms of variances from the �nite sample version

given by Rao[96] -

"Suppose that we have two independent samples X and Y , giving information on the
same parameter �, from which estimates T1(x) and T2(y) obtained are such that

E[T1(X)] = E[T2(Y )] = �;

V [T1(X)] = v1;V [T2(Y )] = v2;

where v1 and v2 are independent of �. Further, suppose that there exist statistics
A1(X) and A1(Y ) such that

E[T1jA1(X) = A1(x)] = �;

E[T2jA2(Y ) = A2(y)] = �;

V [T1jA1(X) = A1(x)] = v1(x);

V [T2jA2(Y ) = A2(y)] = v2(y);

where x and y are observed values of X and Y , respectively, and v1(x) and v2(y) are
independent of �. Then, we might consider the conditional distributions of T1 and T2
given A1 and A2 at the observed values and report the variances of T1 and T2 as v1(x)
and v2(y), respectively, as an alternative to v1 and v2. What is the right thing to do?

Now, consider the problem of combining the estimates T1 and T2 using the reciprocals
of v1, v2 and v1(x), v2(y) as alternative sets of weights:

t1 = (
T1
v1
+
T2
v2
)=(

1

v1
+
1

v2
);

t2 = (
T1
v1(x)

+
T2
v2(y)

)=(
1

v1(x)
+

1

v2(y)
):

It is easy to see that the unconditional variances of t1 and t2 satisfy the relation

V (t1) � V (t2)
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[by application of the Guass-Markov Theorem, conditional on x and y]."

In the 1934 paper, he addressed the same question for small samples (where the log-likelihoods

can be of any form) and concluded that, in general, single estimates will not su¢ ce but that the

entire course of the likelihood function would be needed. He then de�ned the necessary ancillary

statistics in addition to the MLE in this case as the second and higher di¤erential coe¢ cients at

the MLE (given that these are de�ned). These would allow one to recover the individual sample

log-likelihood functions (although he did not state the conditions under which the Taylor series

approximation at a given point recovers the full function - see Bressoud[14]) and with their addition,

the log-likelihood from the combined individual observations from all the samples.

The concept of ancillary statistics has changed somewhat since - in fact very soon afterwards,

as a year later Fisher treated �ancillary� as a broader term of art not speci�cally wedded to

local behavior of the likelihood function[114]. This was its original conceptualization though �

how to �correctly�(without loss of information) combine results from separate sample summaries,

given a choice of what the separate sample summaries should be but no access to the individual

observations in the separate samples. Here, �correctly�is de�ned as getting some multiple of the

likelihood function from all the observations but with access only to the collection of summaries.

It is perhaps tempting to suggest that Fisher�s key ideas in his theory of statistics (the breadth

of which is for instance re�ected in Efron�s claim that modern statistical theory has added only

one concept, that of invariance, which is not well accepted[41] ) arose from his thinking of statistics

as the combination of estimates. Fortunately for us, Fisher as much said so in a 1935 paper read

at the Royal Statistical Society[50]. In discussing overcoming the preliminary di¢ culty of multiple

criteria for judging estimates �better for what? �he argued

�Whatever other purpose our estimate may be wanted for, we may require at least that
it shall be �t to use, in conjunction with the results drawn from other samples of a like
kind, as a basis for making an improved estimate. On this basis, in fact, our enquiry
becomes self contained, and capable of developing its own appropriate criteria, without
reference to extraneous or ulterior considerations.�

And later in the next paragraph �

� . . . , where the real problem of �nite samples is considered, the requirement that our
estimates from these samples may be wanted as materials for a subsequent process of
estimation [combined somehow with results drawn from samples of a like kind?] is
found to supply the unequivocal criteria required.�[italics in the original]
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3.3 Late Fisher

Fisher continued to exhibit numerous references to multiple estimates or studies in his 1956 book

Statistical Methods and Scienti�c Inference[51]. For instance, on page 75, he states

�It is usually convenient to tabulate its [the likelihoods] logarithm, since for independent
bodies of data such as might be obtained by di¤erent investigators, the �combination
of observations�requires only that the log-likelihoods be added.�

On page 163 he further notes

�In practical terms, if from samples of 10 two or more di¤erent estimates can be cal-
culated, we may compare their values by considering the precision of a large sample
of such estimates each derived from a sample of only 10, and calculate for preference
that estimate which would at this second stage [meta-analysis stage] give the highest
precision.�

Finally on page 165 he concludes

�. . . it is the Likelihood function that must supply all the material for estimation, and
that the ancillary statistics obtained by di¤erentiating this function are inadequate only
because they do not specify the function fully.�

Given this, it is suggested that Fisher considered the theory of estimation as validly based on

the idea of retaining "all" of the likelihood in the estimates "summarized" from studies so that the

overall likelihood-based on the individual observations from similar studies could be re-constituted

by just using the studies�estimates. This metaphor or model of estimation was continually referred

to through many of his publications - though perhaps even few familiar with Fisher�s work have

noticed that (AWF Edwards, private communication). Fisher was even cited as being the main

impetus for one of the earliest papers on p-value censorship[112]. There is some note of it given in

Savage [104], which suggested to the author that Fisher�s papers should be reviewed for this, and

also in Rao[96].

In conclusion, the early development of statistics in the context of combination of observations

and Fisher�s numerous and continued references to multiple estimates or summaries in his statistical

writing suggests that statistical theory should be easily relatable to meta-analysis as some of the

roots and elaborations of statistical theory were based on meta-analytical considerations.
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3.4 Post-Fisher

The history chapter in this thesis started with the combination of observations made by di¤erent

astronomers and geodesists in the late 1700�s and early 1800�s and then concluded with some

excerpts from Fisher�s 1956 book. Unfortunately, the quantitative combination of estimates from

randomized clinical trials was quite rare before about 1980 so there is a need to bridge the gap.

Meta-analysis for psychological and educational research started somewhat earlier, and by 1976

Glass highlighted the desirability of the tradition of combining estimates from di¤erent studies and

apparently �rst coined the term meta-analysis. Some authors argue that meta-analysis methods for

clinical research were initially based on this activity in psychological and educational research. In

educational and psychological research however, studies would very often use di¤erent outcomes or

scales, and to this end, Glass proposed the use of an index of e¤ect magnitude that did not depend

on the arbitrary scaling of the outcomes so that combining in some sense, made sense. Presumably,

in response to this, Hedges and Olkin wrote a book[65] in 1985 directed (as the authors indicated)

at providing di¤erent statistical methods from those of Fisher & Cochran that were designed to

speci�cally deal with this new and di¤erent kind of meta-analysis - that of combining di¤erent

outcomes using an index of magnitude. In 1990, Olkin[82], quoting Fisher, again highlighted this

arguably di¤erent class of meta-analyses (which apparently are more common in psychology and

education than clinical research) of determining the combined signi�cance of independent tests on

outcomes �that may be of very di¤erent kinds�(by combining their p_values.)[84].

Hedges and Olkin�s book, although a substantial and now classic book for combining di¤erent

outcomes using an index of magnitude, is somewhat out of place for the more usual situation

encountered in clinical research where a series of randomized clinical trials have identical or very

similar outcomes. Here Fisher and Cochran�s methods would be arguably more appropriate. (With

recent changes in clinical research, speci�cally the inclusion of Quality of Life measures which are

comprised of various scales, this may be less the case for those outcomes.)

DerSimonian and Laird[38], published in 1986 what was perhaps one of the �rst �modern�

papers on statistics for meta-analysis for randomized clinical trails. It drew on and referenced

a 1981 paper[97] that W. G. Cochran was the senior author on (published posthumously) that

was comprised of simulation studies of various estimators of combined estimates from Cochran�s

1937 Normal�Normal random e¤ects model[19]. DerSimonian and Laird chose to adopt one the

closed form non-iterative formulas from this paper and adapted it for binary outcomes. Two more
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methodological as well as statistical papers appeared in the next year - Sacks et al[103] and L�Abbe,

Detsky and O�Rourke[72] (the author of this thesis). The authors of these three papers had been

loosely collaborating since 1985. In particular, Chalmers had provided a draft of his quality scoring

system and DerSimonian and Laird had provided their draft paper to the author when the L�Abbe

group were developing their ideas and paper. There it was suggested that logistic regression be

used for conducting meta-analyses of randomized two group experiments with binary outcomes as

it provided a likelihood-based approach (the author was the statistician on the paper and wrote

the statistical appendix for it). First, the logistic regression is set up to include an indicator term

for study, a term for treatment group, and an interaction term (treatment by study). The indicator

term for study allows a separate baseline estimate for each study so that each study�s treatment

e¤ect estimate contribution is relative to its own control group. The treatment group term allows

for a common treatment e¤ect estimate and the interaction term allows for a separate treatment

e¤ect estimate for each individual study (the same as one would get using each study�s data alone).

The consistency of study results is then quantitatively analyzed by investigating the variation in the

individual study treatment e¤ect estimates and their con�dence intervals and, less preferably, the

statistical signi�cance of omitting the interaction term in the logistic regression. A warning about

the low power of this test was given along with a suggestion that clinical judgement was preferable.

With the omission of the interaction term, a common �pooled� treatment e¤ect is constructed

along with estimates and likelihood ratio-based con�dence intervals and tests. The likelihood for

the con�dence intervals for the common treatment parameter � is obtained by pro�ling out the

within study baseline parameters ci

L(y1; :::; yn; � ; ĉ1; :::; ĉn)

which is of course equal to Y
i

L(yi; � ; ĉi)

as the ĉi; s are mutually independent. Thus it was equivalent to the approach in this thesis, but

with the marginal likelihood being immediately given by su¢ ciency and random e¤ects neglected.

Random e¤ects were later allowed for in a technical report[87] using a method from Cox and

Snell[29] that Venables and Ripley claim was �rst suggested by Finney in 1971[120] and is now

often referred to as quasi-likelihood - where the scale parameter, rather than being set equal to
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one, is estimated by the deviance or Pearson Chi-square statistic divided by the residual degrees of

freedom. Quasi-likelihood though, is a much more general approach, not tied to speci�c estimates

of scale. To second order, this scale estimate has the e¤ect of simply increasing the standard error

of the MLE as the MLE itself is una¤ected. As reviewed in appendix E, Tjur gave reasons for

preferring that the MLE be una¤ected, which McCullagh was then easily able to set aside. Many

authors though, simply reject this allowance for random e¤ects by scale estimation as being ad hoc.

Sta¤ord�s adjustment[111] was adopted earlier in this thesis, as it provides an asymptotic rationale

for the allowance for random e¤ects which may overcome such objections to its use. But, unless

the likelihoods are essentially quadratic, as is usually the case with binary outcomes, it is unlikely

to modify the �xed e¤ect likelihoods to adequately approximate possibly true level 2 likelihoods.

In Statistics in Medicine in 1986[94], Richard Peto provided an explanation for a statistical

method he had used in earlier applications. For ruling out the null hypothesis of no e¤ect, he had

used a test based on the unweighted sum of observed minus expecteds Oi �Ei, and for combined

estimation of an odds ratio, he had used a weighted sum of Oi �Ei with the weights being the

inverse variance of Oi � Ei. These quantities could be directly motivated as being quadratic

approximations to maximum likelihood estimation under a conditional logistic regression model,

as for instance was shown in Cox[23] and referenced by Peto[123] in 1985. Of course there is always

more than one way to motivate a quantity �it is just suggesting this is one possible way.

In 1986, Peto emphasized entirely di¤erent justi�cation of the use of Oi �Ei by starting with the

question �But why use observed minus expecteds rather than some logistic model?�His answer had

two parts �one was that observed minus expecteds would be readily understandable to physicians

and that it provided a typical estimate of odds ratios that did not depend on assumptions of

the sort needed for logistic regression (although this does follow from assuming a conditional

logistic regression model and approximating the conditional MLE by the score statistic � see

O�Rourke[84]). Unfortunately, he did not de�ne what he meant by �typical�nor the �depend[ence]

on assumptions". Perhaps most strikingly, he dismissed the use of random e¤ects models using

very similar arguments that Fisher had used for the certain cases where Fisher thought random

e¤ects speci�cally should not be considered � see O�Rourke[84]. It is perhaps more tenuous to

relate this Oi �Ei approach back to Fisher and Cochran than the approach of DerSimonian and

Laird and L�Abbe, Destky and O�Rourke but more or less indirectly the methods of Fisher and

Cochrane became central for the meta-analyses of randomized clinical trials.

60



The pressure for clinical researchers to actually carry out meta-analysis of randomized controlled

trials in their various �elds had been building perhaps soon after Archie Cochrane published an

essay in 1979, in which he suggested that "It is surely a great criticism of our profession that

we have not organized a critical summary, by speciality or subspecialty, adapted periodically, of

all relevant randomized controlled trials" . In 1985, an international collaboration to prepare

systematic reviews of controlled trials in the �eld of pregnancy and childbirth, resulting in the

publication in 1989 of: "E¤ective Care in Pregnancy and Childbirth (ECPC): A Guide to E¤ec-

tive Care in Pregnancy and Childbirth (GECPC)", and "The Oxford Database of Perinatal Trials

(ODPT)". Encouraged by the reception given to the systematic reviews of care during pregnancy

and childbirth, Michael Peckham, �rst Director of Research & Development in the British Na-

tional Health Service, approved funding for "a Cochrane Centre" to facilitate the preparation of

systematic reviews of randomized controlled trials of health care, in 1992. Later that year, "The

Cochrane Centre" opened in Oxford, UK. In 1993, an international and comprehensive concept

of the Cochrane Collaboration was presented at a conference ("Doing more Good than Harm")

organized by Kenneth Warren and Frederic Mosteller at the New York Academy of Sciences, and

in June of that year the development of Cochrane Collaboration�s Handbook as a tangible means

to facilitate the preparation of systematic reviews of randomized controlled trials of health care

began with the arrival of the 1st Cochrane Visiting Fellow at the UK Cochrane Centre.

In 1993, a Cochrane Collaboration Workshop on statistical methods for data synthesis was

conducted and a report drafted. The list of participants included D. Altman, P. Armitage, C.

Baigent, J. Berlin, M. Bracken, R. Collins, K. Dickersin, D. Elbourne, R. Gray, K. McPherson, A.

Oxman, M. Palmer, R. Peto, S. Pocock, K. Schulz and S. Thompson, all of whom were statisticians,

epidemiologists or physicians with expertise in statistical methods for data synthesis. The workshop

was convened to develop guidelines on statistical methods for data synthesis for the Cochrane

Collaboration�s eventual handbook and to identify useful research topics in that area.

In the report, the deliberations are outlined and a set of implications for the Cochrane Collabo-

ration are given. It was assumed that only published summary statistics would be available for the

foreseeable future, although the preferability of having individual participant data was indicated.

Issues of inclusion criteria for systematic reviews were not considered except for those having to

do with methodological quality. There was a major discussion on e¤ect measures with greatest

emphasis on binary outcomes where the relative merits of odds ratio versus relative risk were dis-
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cussed at length. Here the odds ratio was favoured as a default, but it was stated that the relative

risk and risk di¤erence should not be ruled out as options. Some felt the choice of e¤ect measure

should depend in some part on a test of heterogeneity, while others disagreed. Several participants

felt it would be preferable to use di¤erent measures for presentation than were used for analyzing

the data. Continuous outcome measures received much less attention with weighted mean di¤er-

ences being suggested as appropriate, along with the possible consideration of standardizing by

the control group standard deviation (to get an �e¤ect size�). Most felt the area merited deeper

study - di¢ culties being anticipated about choice of e¤ect measure, the issue of data distribution,

use of medians rather than means, handling of before and after measurements, weighing of studies

and missing data. Further research on these was recommended. The issue of binary and contin-

uous data also arose with some suggestion of automatic transformation of continuous outcome to

binary, but further study was recommended. Here some of the issues now resolved by this thesis

were being identi�ed and highlighted 20 years ago.

As for approaches to aggregation, many but not all, recommended the use of a test of het-

erogeneity with the issue of low power being identi�ed as a concern along with a suggested Type

I error level of .10 rather than the customary .05. As for aggregation, given the determination

that "substantial" heterogeneity is not present, after some discussion and a suggestion that results

would be similar, a �xed e¤ect models was decide upon as the default approach. Considerable

disagreement ensued, however, when the discussion turned to the preferred approach under condi-

tions of statistically demonstrable heterogeneity. Both random and �xed e¤ect models had strong

proponents. The report cautions that characterizing in a few words the di¤erences between �xed

and random e¤ects proponents would be challenging.

Some claimed the �xed e¤ect approach was �assumption free� and is not [should not be] di-

rectly in�uenced by heterogeneity while others claimed that it would produce an arti�cially narrow

con�dence interval, as it does not re�ect between-trial variance. They suggested random e¤ects

did not make as stringent an assumption as there being no di¤erences between the underlying true

treatment e¤ects in the individual trials and hence was preferable. Common ground under these

widely contrasting views was then summarized : the analyst should attempt to explore the reasons

for the heterogeneity and explain it, especially with regard to varying methodological quality, that

the ruling out of an overall null hypothesis of no e¤ect in all trials need not distinguish the alterna-

tive to be �xed or random but �at least one of the trials�has an e¤ect; that whether heterogeneity
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was present or not, the �xed e¤ect estimate is an informative average measure of treatment e¤ect;

and, �nally, that as random e¤ects methods have rather amorphous assumptions, it was an area

requiring more research into the importance of the assumptions and robustness to them. Here,

the pragmatic concern arose regarding random e¤ects methods giving relatively more weight to

smaller studies when these often are of poorer quality and more subject to publication bias.

The entire discussion regarding appropriate approaches for aggregation under conditions of

heterogeneity pertained to binary data. The same general principles, however, were thought to

apply to continuous data and it was mentioned that the same discussion about �xed versus random

e¤ects models had occurred many years ago, relative to continuous data. They felt they should

acknowledge that various �xed and random e¤ects approaches were available and that future

research should compare DerSimonian and Laird�s approach to those based on maximum likelihood

methods.

This thesis provides a general approach for both discrete and continuous data, regardless of

reported summaries, based on the observed summary likelihood. Additionally, DerSimonian and

Laird�s approach can be compared to likelihood methods using numerous assumed distributions

for random e¤ects. It is a bit surprising that it has taken 20 years for this to be undertaken.

4 Background for randomized clinical trials

4.1 Statistics as the combination of observations

In this chapter, apparent di¤erences between statistical analyses of single studies and multiple

studies are sketched out. A brief overview of issues that arise given the ever present possibility of

incompletely and/or selectively reported studies that arise in the current clinical research context

are then given. Recent scandals of extremely high false positive publication rates in the genetics

literature - that lead at least one journal to threaten to refuse to publish new results until they were

replicated [comment, John Ioannidis] - underline the importance of this material. A "commonly

accepted" statistical approach for dealing with multiple studies is then brie�y sketched.

Statistics is often presented as providing a mathematical approach to address variation in

observations that arise under identical or similar conditions. Something is believed to be, or

pragmatically taken as being common, in all the observations even though they do actually di¤er

from each other. As stated in the introduction, this commonness is made explicit in parametric
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likelihood by parameters repeating in the multiple of the observation likelihoods. Observations are

conceptualized as being generated from probability models and if a parameter repeats (in some

chosen re-parameterization), then there was replication of that parameter (assuming the model is

true).

Certainly, the concept of something being common in observations even when they vary is

central in statistics - especially if the observations are taken under apparently identical conditions.

The appropriate extension of this concept to something being common in slightly or even largely

di¤erent situations or contexts is admittedly more challenging. Parameters being common in

distribution is an even further extension to treating admittedly di¤erent things as though they are

exchangeable or common in some probabilistic sense. Here the interest could be primarily on what

is common in the probability distribution that generated the lower level probability distributions,

or something about a particular lower level distribution. Again, it is the �rst that is usually of

primary interest in clinical research[15].

On the other hand, a working assumption of commonness arguably underlies the use of any

statistical analysis of observations, and may fail to hold no matter how similar the conditions of

observation were contrived to be. The conditions under which replication should be expected and

whether it actually happened (both the conditions for it and observed commonness) are far from

trivial. Replication of studies should be the norm in scienti�c studies (recall the current concern in

the genetics literature). Studies conducted under identical or similar conditions should be expected

to have something in common. The conditions for, and assessment of, the actual achievement of

replication of something common here are likely to be much more di¢ cult �especially if what is con-

ceptualized as common is just something about a �postulated�higher level distribution. Perhaps

the need to stress both investigation and synthesis, not just synthesis, cannot be overemphasized

in any area of statistics. It is important to perhaps keep model �t separate from commonness of

a parameter - i.e. a parameter may be common, but the distribution form (a nuisance parameter)

may be mis-speci�ed with light tails making the truly common parameters appear non-common.

4.2 Meta-analysis or systematic review

Meta-analysis or systematic review are common terms used to refer to the quantitative and quali-

tative analysis of multiple studies. Perhaps less common terms are research synthesis, overviews,

pooling and (periodic) scienti�c audits. Whatever the term, it is ideally a full investigation and
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synthesis of what is possibly common in di¤erent studies utilizing appropriate quantitative and

qualitative analysis. As an aside, some object to the term meta-analysis as being somewhat pre-

tentious. As Aronson[4] concluded from a linguistic analysis of the pre�x meta -

�meta-analysis is an analysis of analyses, in which sets of previously published (or
unpublished) data are themselves subjected as a whole to further analysis. In this
statistical sense it [the term meta-analysis] was �rst used in the 1970s by GV Glass
(Educ Res 1976;3(Nov):2).�

The analysis of the results of trials not the analyses actually carried out in the trial publications

per se, is the real concern here. The analysis used in a given trial may or may not be informative

as to the results, but it is the results that are of primary concern, not the analysis perhaps

indiscriminately used. A term more re�ective of the refereeing or auditing of the results of a

collection of studies may have been preferable[86].

The further role of meta-analysis in encouraging better individual studies and providing feed-

back was also emphasized in O�Rourke and Detsky[86] where it was argued that meta-analysis

was just part of being scienti�c by critically evaluating all the available supposed evidence on a

question, and that a meta-analysis which concluded that there was no evidence was not to be

thought as less of a meta-analysis. It was further argued that the desire to �somehow�pool the

data, even if it was questionable, needed to be guarded against.

To address this haunting concern about not being able to refrain from somehow combining stud-

ies no matter how unlikely it was that something was common, the term systematic review is often

taken to mean, especially in Europe, a qualitative investigation and synthesis perhaps without any

quantitative investigation (analysis of the replication) but certainly without any quantitative syn-

thesis. Meta-analysis is then taken to be just the quantitative combining of estimates from studies

(perhaps conceived by some as being largely mechanical). It is debatable whether quantitative

techniques for investigating di¤erences in estimates from studies (i.e. analysis of the replication)

fall under the term systematic review or meta-analysis (Iain Chalmers, editor of The James Lind

Library, private discussion). The choice to not actually carry out a quantitative combining of

estimates may in itself be based on both quantitative and qualitative considerations and as long

as this is borne in mind, the interchange of terms systematic review/meta-analysis should not be

of great concern.

What is meant by di¤erent experiments has yet to be de�ned and a broad de�nition of this may

be that the experimental observations simply involved di¤erent contexts. This de�nition would
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tentatively include, rather than exclude, multi-centre clinical trials as (at least potentially) a sys-

tematic review/meta-analysis. Apparently, many think of multi-centered trials as being very di¤er-

ent from meta-analysis and especially vice-versa, though not everyone would agree with this[105].

Some might argue that adherence to a common protocol prevented the contexts from being impor-

tantly di¤erent. Here the motivating concern is that if the context is importantly di¤erent, some

things may very well have changed, but there may still be something common that can be �esti-

mated� in both contexts and productively pooled. It would be a mistake to not make allowance

for what may have changed but also to disregard what may have remained common and in what

sense. What exactly is meant by context is unavoidably left somewhat vague.

Some writers have claimed that statisticians usually, or even almost exclusively, deal with

�single studies�rather than multiple studies, using terms like �myth of a single study�[17], �cult of

the single study�[76] and �single sets of data"[42]. With a more general reading of the literature,

exceptions turn out to be so numerous that one wonders how such an impression arose. For instance,

one �nds the analysis of multiple studies addressed by numerous statisticians in the bibliography

of this thesis.

Some statisticians though, may seldom encounter projects that involve more than a single study

and may well have some doubts about how to proceed when they �rst encounter the need to analyze

multiple studies. Whether there is a real basis for these doubts depends largely on the question

of whether there is anything substantially di¤erent from a statistical perspective when the data

come from multiple studies. Cox[24] also addressed this question starting o¤ with a concise claim

that �the words combination of data encompass the whole of the statistical analysis of data.� In

elaborating on this, he pointed out that separate sets of data can arise in two distinguishable ways.

A single data set may be divided into simpler subsections that are analyzed separately and then

combined. Alternatively, the separate sets of data may come from quite distinct investigations.

Cox then suggested that the technical statistical problems in these two situations may well be

identical with the proviso that assumptions of homogeneity (i.e. questions of whether repeated

studies are actually addressing some common entity or underlying process, again the analysis of

the replication) may well be more questionable and problematic.

This thesis will attempt to add to Cox�s paper, the concept that with respect to any parametric

likelihood approach there are always implicit and trivial separate sets of data consisting of the

individual observations (which Cox in another paper[25] coined the trivial likelihood factorization)
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that have somehow been (perhaps somewhat uncritically) combined in the statistical analysis.

Hence statistical analysis is (or should be) always in some sense concerned with the investigation

and synthesis of what is common in the individual observations. From the perspective of this

thesis, the two papers by Cox referenced above come to be seen as directly related to each other.

4.3 The scienti�c issues of a haphazard collection of studies

There is a need to be aware of the important scienti�c and substantive issues of how a haphazard

collection of studies - some perhaps censored, some very poorly done and some even mis-reported

- arise in practice. Special concerns and issues do arise when there is a (potential) haphazard

collection of studies. The need to locate, investigate and synthesize repeated or similar studies

surely occurs almost all the time in most areas of clinical research. It would be a rare exception

where only one study was ever conducted that addressed a particular question or some aspect

of it. Ignoring studies done by others (known or unknown) is a very inadequate way to locate,

investigate and synthesize all the available evidence on a given question. Determining that there

was indeed only one study is perhaps a necessary step in any complete analysis of any single data

set. Selective reporting of studies is not just a problem for meta-analyses or systematic reviews -

any particular study in hand may have been through some selection process and hence be biased

in some fashion[83].

Adequate ways of locating, investigating and synthesizing all the evidence are surely desirable.

This thesis is primarily concerned with the statistical aspects of investigating and synthesizing

repeated or similar studies given the summaries available. Admittedly, the statistical aspects may

often not be as critical as the qualitative scienti�c components (i.e. �guring out which studies

one should expect to have exactly what in common, �guring out if some have not been published

and which were published twice misleadingly as di¤erent studies, etc.), but the statistical issues

deserve full and proper consideration. For this thesis, the focus is largely on the investigation

and synthesis of the extracted summaries in hand - taking them as adequate and correct. In any

particular meta-analysis though, these wider issues may be much more important.

Checking the correctness of extracted summaries should be part of a full investigation, that

would also involve many other aspects of study design, conduct and publication. A full synthe-

sis may involve qualitative scienti�c considerations that are not easily dealt with in a statistical

framework. An adequate grasp of the actual practice of conducting and publishing clinical studies,
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especially the de�ciencies, is essential for a full investigation and synthesis of a given set of studies

in hand.

The analysis of extracted summaries taken as correct, amongst other things, is comprised of the

analysis of the replication of estimates that were expected to be similar in di¤erent experiments - i.e.

were they consistent? Was the parameter common or just something in a postulated distribution of

it? This was indeed stressed in many early papers on meta-analysis of clinical studies (L�Abbe[72],

Sacks[103], Greenland[58]) and meta-analysis in general (Cox[24]) and with the combining of prior

and sample information inherent in Bayes theorem (Fisher[51], and Sprott[109]). The synthesis of

extracted estimates taken as correct, amongst other things, is comprised of the determination of

the most appropriate combined estimate, and the quanti�cation of the uncertainty in it, given the

accepted commonness of the parameter or the commonness of the distribution of the parameter.

It is perhaps not often enough stressed that the most appropriate synthesis could just be taking

what was believed to be the only good estimate available on its own or refusing to accept any of

the estimates at all. There should be no commitment to get some combined estimate against good

judgement or to get just one combination. Again, the ideal is a full investigation and synthesis

of the studies with regard to what was expected to be common among them �was it common in

what sense and if so what inference is best - given all available knowledge of the studies whether

published or not.

4.4 Additional issues re: common distribution of parameters

Special considerations arise when it is the distribution of parameters that is common rather than

the parameters themselves and these special considerations were not fully discussed when we dealt

with observations. But with studies, it is important to distinguish what it was that lead to �loss

of commonness� of the parameter that was "hoped" to be common. It could very well be that

the true treatment e¤ect does vary amongst RCTs due to variation in patient characteristics, for

instance. Or there may have been �slight breakage�of the individual RCTs �for instance when

some confounding arises that would necessitate inclusion of appropriate confounding parameters.

For example, some RCTs may have been in varying degrees somewhat lax on following up patients

who were non-compliant on treatment and the biases in this informative loss of patient follow up

that varied by study may give the impression that the treatment e¤ect haphazardly varied amongst

the RCTs. In the �rst case, true treatment e¤ect variation, these variations in observed treatment
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e¤ects corresponds to a biological treatment interaction and there may or may not be an interest

in estimating it or ignoring it for the patients studied so far - the question of representativeness of

the observed interaction should immediately come to mind[49].

On the other hand, if the variations in observed treatment e¤ects correspond solely to method-

ological �aws in the RCTs - at least for inferences to patient populations of interest - they are an

unfortunate nuisance, for which some allowance has to be made. It would be very unusual to want

to know about a speci�cally confounded e¤ect from a population of similarly �awed studies, at

least in the absence of a known true treatment e¤ect. In applications, the two situations are likely

to be inseparable and it would seem prudent to treat the haphazard variation as a nuisance before

taking it as evidence of something of interest.

Suggested random e¤ects models to deal with variation in treatment e¤ect seldom if ever

di¤erentiate these causes - they are simply suggested as a method for dealing with either. For

instance, this lead Simon Thompson to propose, at a Methods in Meta-analysis (MIM) meeting

at the Royal Statistical Society, that observed variation between trials possibly exceeding that

due to chance should be interpreted as real variation in treatment e¤ects and for purposes of

the generalization of this to the practice setting, some quanti�cation of the distribution of these

varying treatment e¤ects should be strongly encouraged. The author objected on the grounds that

it would be unusual for the variation to be largely due to true treatment variation but rather a

mix of methodological variation (varying biases) and true treatment variation. Following the MIM

meeting, the author drafted the initial writing of a revised entry for the Cochrane Handbook so

that observed variation between trials exceeding that due to chance would NOT immediately be

interpreted as real and worth trying to generalize -

"Clinical variation will lead to heterogeneity if the treatment e¤ect is a¤ected by the

factors that vary across studies �most obviously, the speci�c interventions or patient

characteristics. In other words, the true treatment e¤ect will be di¤erent in di¤erent

studies. Di¤erences between trials in terms of methodological factors, such as use of

blinding and concealment of allocation, or if there are di¤erences between trials in the

way the outcomes are de�ned and measured, may be expected to lead to di¤erences

in the observed treatment e¤ects. Signi�cant statistical heterogeneity arising from

methodological diversity or di¤erences in outcome assessments suggests that the stud-
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ies are not all estimating the same quantity, but does not necessarily suggest that the

true treatment e¤ect varies. In particular, heterogeneity associated solely with method-

ological diversity would indicate the studies su¤er from di¤erent degrees of bias".

For true treatment e¤ect variation, a distribution of treatment e¤ects of some sort may make

sense along with considerations of what are good descriptive summary measures of this. Good de-

scription summary measures are only straightforward for symmetric distributions but as symmetric

distributions are almost always assumed [J. N. K. Rao, response to suggestion of asymmetric dis-

tributions for random e¤ects made by the author at an Edmonton Conference in 2000] discussions

about this issue seldom arise. For the case where confounding has displaced a common treatment

e¤ect, the random e¤ects model usually represents a common symmetric distribution of an overall

confounding parameter that has expectation zero to represent the "hope" that this overall con-

founding will fortuitously cancel out. The location or centre of the level 2 distribution is then

interpreted as a useful estimate of the unconfounded treatment e¤ect. Background considerations

would surely suggest an asymmetric distribution for confounding where the confounding is not

expected to fortuitously cancel out.

The sensitivity of distributional assumptions about random e¤ects is often investigated using

families of symmetric distributions and concentrates on estimation of the location (usually the

expectation) of the level 2 distribution - but again non-symmetric distributions are the more

realistic threat. These can easily arise if biases from faulty trials are more likely to favour a

speci�c treatment arm, or from there being a mixture of two or more underlying treatment e¤ects.

Again, even choosing a summary for a non-symmetric distribution is problematic, let alone the

challenge of estimating skewness with a small number of studies. An illuminating example of this

was provided by Efron[40].

This haphazard variation - i.e. individual estimates of something hoped to be constant, such

as a treatment e¤ect, varying more than expected by chance - could be modelled formally by

the random e¤ects model or informally by the "likelihood curvature adjustment" method. For

the formal approach, the estimation of parameters of the common distribution is natural. In the

informal approach, the combined likelihood is modi�ed so that asymptotically correct variance

estimates are available from the usual likelihood quantities. Tjur pointed out the lack of, as he

put it, "a meaningful theory of generalized linear models with overdispersion [random e¤ect]"[118].

Unfortunately, in meta-analysis in particular, the number of RCTs is usually fairly small. Because
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of this the asymptotics may not be a good guide for the informal approach, and for the formal

approach the particular probability distributions for the haphazard variation in treatment e¤ect

estimates may give di¤erent results, and the appropriateness of the various models would be very

di¢ cult to discern amongst - so that complete resolution of the conceptual challenges is quite

unlikely, as for instance argued in O�Rourke.[83] Keiding[68] has made similar comments about

random e¤ects or frailty modeling in survival analysis.

An important argument in favour of the informal approach is that it avoids a possibly serious

bias that would occur when studies are not exchangeable and the change in weights under the formal

random e¤ects model versus �xed model is correlated in an unfortunate way with, say, study quality

or amount of bias. By avoiding this bias, it may provide an ad hoc but very reasonable compromise

where the pooled estimate is kept the same as when no random e¤ects were considered and the

log-likelihood is widened to allow for the extra uncertainty by the likelihood curvature adjustment.

This adjustment is ine¢ cient under �xed e¤ect assumptions but robust under various probability

models for random e¤ects and almost e¢ cient when the random e¤ects are small[9]. Arguably,

much more important though, it avoids the possibly serious bias that occurs when the random

e¤ects weights become correlated with the treatment e¤ect estimates because of study size related

quality and p-value censorship.[83]

The informal approach which simply modi�es the pro�le likelihood for treatment e¤ect as for

instance suggested by Sta¤ord[111] initially seemed to be the less risky way to proceed and a

related technique, based on an approach used by Fisher, was coined the least wrong random e¤ects

model for meta-analysis in O�Rourke[83]. Sta¤ord�s approach was found de�cient for models with

unknown scale parameters even when the �xed e¤ect MLE was relevant.

4.5 Comparative experiments with random assignment

It is of great advantage to be able to randomize subjects to treatments when these are to be com-

pared. Randomization prevents very complicated non-commonness from arising between studies

�i.e. some between group di¤erence (confounding of comparison groups) that may vary between

studies and would need to be represented by between group confounding parameters. These para-

meters are likely to be very complicated. Comparative trials would have likelihoods such as

L (studyi;�ti = si(t) + � ; �ci = si(c); �i)
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where �: is a location parameter of the groups, � a common treatment e¤ect, si(:) some process of

selecting patients into the comparison groups and �i a common within group standard deviation. In

randomized studies, subjects are �rst recruited and then randomized to the groups so si(t) = si(c),

say �i and the likelihood really has only three parameters f�i; � ; �ig (or possibly f�i; � i; �ig if �

is not common). In non-randomized studies, the likelihood would involve fsi(t); � ; si(c); �ig where

si(t) 6= si(c) and these selection processes most likely depend on an unknown number of parameters,

many for which the likelihood would be constant or near constant. In non-randomized studies, it

is possible that the di¤erential selection processes between comparison groups is common across

studies - i.e. fs(t); � ; s(c); �ig. Here commonness could actually be bad as although s(t)+ � � s(c)

can be better estimated (there is a combination for it), this would need to be corrected for �s(t)+

s(c) to get unconfounded estimates of � and there most likely will be no unconfounded estimates

of this.

With randomization there is no need for between group parameters (in addition to the treat-

ment e¤ect parameter and possibly a treatment by study interaction parameter) at least to get

unconfounded estimates of � and this simpli�es considerably the investigation and synthesis of

what is possibly common about � . Even with randomization though, one needs to be careful and

not use likelihoods or probability distributions for parameters that possibly confound the investi-

gation and synthesis of � . For instance, using a common probability distribution for the control

mean parameters leads to incorrect inference, as the combination of the control means over studies

would not in general equal the true control rate even under slight model misspeci�cation. That

is, under the usual assumption of a single draw of the random �:i � P (�) for both groups (again

patients are �rst recruited and then randomly assigned to groups) the study likelihoods for known

variances would be

L (studyi;�ti = �ci + � ; �ci = si(c)) :

The proposed strategy is to de�ne a common treatment e¤ect for instance �ti � �ci

L (studyi;�ti � �ci = � ; �ci) :

Then the non-common parameters are pro�led out within each study

L
�
studyi;�ti � b�ci(�ti); b�ci(�ti)� :

72



Now b�ti�b�ci(b�ti) will equal � asymptotically and speci�cally 0 when � = 0. Alternatively, with
�ci dealt with as a random variable the level 2 likelihood would be

= L
�
studyi;�ti; �

�
c = g(�c1;:::;�cn

�
);

where ��c = g(�c1;:::;�cn) is some kind of shrinkage estimator appropriate under the particular

random e¤ects model. Now here, as discussed earlier, any particular random e¤ects model is highly

suspect and ��c unlikely to be even consistent for the true �ci: Making such suspect assumptions

in the hope of gaining some extra e¢ ciencies in estimation - given randomization - is a very poor

strategy and is not recommended.

With random assignment, the de�ning of treatment e¤ects, given likelihoods from two or more

groups, just involves transformation of the parameters. Whether or not the treatment e¤ect de�ned

that way is actually common is an empirical question. If it is common, then the other non-common

parameters can be pro�led out. A closer look at how random assignment facilitates this is now

taken.

As the groups are randomized, they are independent and the likelihoods involve parameters

relating only to the groups, and not between the groups, and the likelihood for both of them is

simply the multiple of the two. This of course, does not imply there is no between group likelihood

components. For instance, if we knew the treatment was a placebo, the probability models for both

groups would be the same (all parameters would be common) and the groups would be combined

by multiplying the likelihoods

L (group1;�1 = �2)L (group2;�2) :

If there is a treatment e¤ect, then at least some parameter is not common (between the groups)

and the multiple of likelihoods will have two terms for that parameter in it, one for each group

L (group1;�1)L (group2;�2) :

More realistically perhaps

L (group1;�1; �)L (group2;�2; �)
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or even

L (group1;�1; �1)L (group2;�2; �2) :

These log-likelihoods can be re-expressed by taking any invertible function of them and nothing will

be lost �the probability of re-observing exactly the same observations will be the same. Starting

with

L (group1; group2; g1(�1; �2); g2(�1; �2); �) ;

the probability of re-observing the outcome given certain values of the parameters (which de�nes

the log-likelihoods) is not a¤ected by re-expressing those parameters. Certain re-expressions de�ne

treatment e¤ects along a single dimension and these may be of interest, and maybe expected to

be common from well designed randomized experiments, such as

L (group1; group2; (�1 � �2; �2); �)

or perhaps

L (group1; group2; (�1=�2; �2); �)

or even

L (group1; group2; (log(�1)� log(�2); log(�2)); �) :

These are re-expressions of parameters in the probability model and not re-expressions of sam-

ple summaries. As before there will be various options in dealing with the non-common parameters,

again grouped into non-common treatment e¤ect parameters and non-common within study para-

meters.

4.6 The popular two-stage approach to meta-analysis

The most popular quantitative methods for dealing with multiple studies in clinical research, as

mentioned in the introduction, involve a two-stage process of �rst determining a �good� sum-

mary estimate of something expected to be common from each study, and then determining some

�optimal�combination of these summaries, usually based on weighting by inverse variance of the

summary estimates. In fact, it was stated in Deeks, Alman and Bradburn that

"Meta-analysis is a two-stage process. In the �rst stage a summary statistic is calculated
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for each study. ... In the second stage the overall treatment e¤ect is calculated as a
weighted average of these summary statistics. ... All commonly used methods of meta-
analysis follow these basic principles."[35]

In practice, the results from the more usual two-stage approach are believed to be very similar

to those from the explicit likelihood approach suggested here[116] - especially if �informed by�

the likelihood approach (i.e. the choice of the �good�summary and "optimal weights", including

choice of transformation of scale). However, this experience is largely limited to binary outcomes.

The two-stage approach, though, arguably lacks the model base and achievable transparency of

the likelihood approach. On theoretical grounds, the two-stage approach can be criticized as being

arbitrary, the criticism of arbitrariness perhaps being best put by Fisher�s comment with regard

to the necessarily arbitrary choice of a �good�summary ��good for what?�[50].

5 Meta-analysis application examples

Here, only well designed and conducted randomized studies will be considered in detail, starting

�rst with random samples from di¤erent contexts (single group experiments) and then with random

assignment to comparison groups in di¤erent contexts -where it is believed something of interest

was constant and most likely something of non-interest may have varied. Non-randomized stud-

ies involve additional considerations. These additional considerations for non-randomized studies

were only discussed brie�y. This is not because they are felt to be unimportant or not amenable to

likelihood-based approaches, but because they involve considerably more model mis-speci�cation

risk that constrains inference largely to sensitivity analysis [21][59] and their use is possibly advis-

able only with informative Bayesian priors on the model mis-speci�cation[60].

5.1 Computational strategies and tactics

In this section, the computational strategies and tactics used to implement calculations for the

examples in this thesis will be brie�y outlined. This has involved the writing of tens of thousands

of lines of computer code and a hundred plus days of computing. Ideally, one would wish to have

a few procedures that would facilitate the meta-analysis of di¤ering examples with the setting of

options or minor re-programing. This is now being approached, but much work remains. Each

example used similar procedures, but with considerable modi�cations. For instance, the success of

various versions of the global optimizations to obtain pro�le likelihoods di¤er by example and can
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take hours to run. Originally, all of the programing was done in R (or SPlus) but had to be redone in

Mathematica. Mathematica software was a second choice to R - given R�s free availability and wide

use in the Statistical community - but only Mathematica could handle the global optimizations

to get pro�le log-likelihoods and the computational algebra needed for the envelope numerical

integration bounds for level 2 likelihoods. Hence, the Mathematica based approach is outlined

here, but again ideally, freely available software would be better. It might be possible to obtain or

implement procedures in R to overcome the current limitations. This remains future research.

A list structure was used to represent the reported group summaries such as g: = fmean; sd; ng

or g: = fmin;mean;max; ng within the m multiple studies. For single group studies, the list

would be fg1; :::; gmg, for two group studies ffg11; :::; g1mg ; fg21; :::; g2mgg and more generally

for k group studies ffg11; :::; g1mg ; :::; fgk1; :::; gkmgg. Next, a list of probability models, one for

each of these same groups, was de�ned. For single groups studies, a simple speci�cation could be

fPr[�; �1]; :::;Pr[�; �m]g with Pr being for instance the Normal distribution. More generally, the

speci�cation could vary much more from study to study as in fPr1[�; �1]; :::;Prm[�; �m; 
]g : Ran-

dom e¤ects probability speci�cations would be nested as in fPr[�1~Pr[0; �b]; �1]; :::;Pr[�m~Pr[0; �b]; �m]g

though one may more easily start with fPr[�1; �1]; :::;Pr[�m; �m]g and leave the speci�cation re-

garding the commonness in distribution of �: to a later step. Initially, any default or canonical

parameterization will su¢ ce. For instance, for two group randomized studies, a common (starting)

speci�cation would be ffPr[�11; �1]; :::;Pr[�1m; �m]g ; :::; fPr[�21; �1]; :::;Pr[�2m; �m]gg, represent-

ing arbitrary control means, arbitrary treatment means and arbitrary but common within study

standard deviations.

A list of marginal likelihood approximations for all these groups can then be generated from

these two lists, as appropriate. For reported group summaries that are su¢ cient for their associated

probability models, a single sample of the appropriate size n with exactly the same su¢ cient sum-

maries will provide a fully accurate "recreation" of the original data likelihood - i.e. fy1; :::; yng. For

special closed form marginal likelihoods, a sublist of necessary probability speci�cations to provide

the marginal likelihood directly from the reported summaries can be created - i.e. for reported min-

imums and maximums
�
fmin;max; ng; p(min)[P (max)� P (min)]n�2p(max)

	
. Finally for the gen-

eral case, a sample of k samples of size n are generated that have approximately the same summaries

as the reported summaries and the importance sampling observed summary likelihood approxima-

tion formula is applied to these, i.e. ffy1; :::; yng1; :::; fy1; :::; yngkg; to get the approximate observed
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summary likelihood. In order to acquire the needed conditional samples within reasonable comput-

ing time, an opportunistic value in the probability models parameter space is "guesstimated" or

searched for and then unconditional samples, each of size n; are drawn (using only these parameter

values). Only those that are within a given tolerance are kept to get the conditional sample (re-

jection sampling). This can be done in subsets (randomly or perhaps based on varying tolerances)

to give some sense of the accuracies being obtained. Usually tens of thousands of samples are

drawn and rejected to meet chosen tolerances but extremely high rejection rates (in the millions)

suggests either poorly chosen values in the parameter space or probability model/reported sum-

mary con�ict. In a given meta-analysis a resulting list such as the following can result, illustrating

all three cases of su¢ ciency, closed form observed summary likelihood and non-su¢ cient summary

ffy1; :::; yng; ::;
�
fmin;max; ng; p(min)[P (max)� P (min)]n�2p(max)

	
; :::; ffy1; :::; yng1; :::; fy1; :::; yngkg:

Reparameterizations are then required to highlight the arbitrariness, commonness or common-

ness in distribution of the various parameters amongst all the groups. A rewrite of the list of

probability models is perhaps most convenient for this. For instance, for the two group random-

ized study one such rewrite could be

ffPr[�11; �1]; :::;Pr[�1m; �n]g ; ::; fPr[�21; �1]; :::;Pr[�2m; �m]gg

m

ffPr[�1; �1]; :::;Pr[�m; �m]g ; ::; fPr[�1 + �; �1]; :::;Pr[�m + �; �m]gg

for �xed e¤ect and

�
fPr[�1; �1]; :::;Pr[�m; �m]g ; ::;

�Z
Pr[�1 + �1~Pr[0; �b]; �1]d�1; :::;

Z
Pr[�m + �m~Pr[0; �b]; �m]d�m

��

for random treatment e¤ects (note only the treatment group has a common in distribution para-

meter).

Optimizations will then need to be carried out to focus on a common parameter of interest.

The needed optimization is succinctly given as another rewriting of the list of probability models.
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For instance, for focussing on �

nn
Pr[b�1(�) ; b�1(�) ]; :::;Pr[b�m(�)

; b�m(�)
]
o
; ::;
n
Pr[b�1(�) + �; b�1(�) ]; :::;Pr[b�m(�)

+ �; b�m(�)
]
oo

for �xed e¤ect and similarly for random e¤ects. Fortunately, these optimizations can sometimes

be factorized by study. In general, a meta-analysis likelihood from m studies is given as

mY
i

L(
(�); 
(�); �(�)i; yi)

with � representing the interest parameters, � the nuisance parameters and 
(:), �(:)i isolating the

common and non-common parameters. Here there is no parameter based factorization and the full

likelihood must be used. If however there are no common nuisance parameters

mY
i

L(
(�); �(�)i; yi)

the pro�le likelihood value for a given 
(�)
0
becomes factorized as

sup
�(�)i2


mY
i

L(�(�)i; yi; 
(�)
0
)

and as long as the �(�)i are variation independent components (i.e. �(�)i 2 
i and 
1 � 
2 �

:::� 
n = 
 ), the pro�le likelihoods can be obtained separately since

sup
�(�)i2


mY
i

L(�(�)i; yi; 
(�)
0
) =

mY
i

sup
�(�)i2
i

L(�(�)i; yi; 
(�)
0
):

This simpli�es the required numerical optimization considerably. Unfortunately, the random e¤ects

meta-analysis likelihoods have common nuisance parameters, and this simpli�cation is not available

- these optimizations need to be carried out jointly over studies or the information lost by ignoring

common elements is somehow argued to be unimportant[27]. However, for a given "proposed"

pro�le likelihood path (obtained by a global optimization), re-optimization given the proposed

common interest and nuisance parameter estimates will allow a study-wise optimization that should

match exactly. This then would provide a less compositionally error-prone check on �(�)i; given a

certain value of 
(�). The study-wise optimization is still error-prone using standard optimization

programs and can even fail when the global optimization succeeds. This suggests future work on

78



identifying the least error-prone approach for low dimensional optimization, perhaps a robust grid

based approach[27].

It may always be useful to start with �xed e¤ect assumptions where there are no common

nuisance parameters as the sum of the separately optimized log-likelihoods provides a less "opti-

mization error-prone" means of obtaining the pooled log-likelihood. This might also provide good

starting values for the joint optimizations required for the random e¤ects model.

Mathematica�s minimization routine "FindMinimum" for �nding single local minima was soon

abandoned for the examples in this thesis, as it frequently failed. Instead, the newer Mathematica

function that tries to �nd global minimums, "NMinimum" was used. This function has a number

of implemented methods - "NelderMead", "Di¤erentialEvolution", "SimmulatedAnnealing" and

"RandomSearch". The Mathematica documentation suggested Di¤erentialEvolution frequently

found better minima and this seemed to be the case. Earlier gridding methods written in R

will be re-written in Mathematica for future checking of the optimizations (at least when the

dimension is moderate). Use of multiple implementations and multiple starting ranges is advisable

and was undertaken for the examples. It might be possible to implement similar methods in

R (perhaps using "c" routines) and this would remove any reliance on an admittedly largely

"blackbox" implementation. In particular, a Di¤erential Evolution Optimization package became

available for R in July, 2006.

An intuitive likelihood-based meta-analysis plot was found wanting - raindrop plots had been

entertained earlier in the thesis but were found de�cient in displaying non-quadratic components

in combined likelihoods as well as how the individual log-likelihoods add (or in a sense subtract)

to provide the pooled log-likelihood. In some cases, the focus of this will need to shift from a

global view to display any possible con�ict between the individual log-likelihoods to a local pooled

likelihood view, to display how the individual log-likelihoods add and subtract near the pooled

likelihood maximum. A plot was developed to do this, taking advantage of the arbitrary additive

constant involved in log-likelihoods. First, all of the individual log-likelihoods have constants added

to them so that their maximums are 0. These are then added to get the pooled log-likelihood.

A constant is then added to this pooled log-likelihood so that its maximum is 2. This provides

an approximate 95% pooled likelihood ratio based con�dence interval when it intersects with a

line drawn at 0. Next, all of the individual log-likelihoods have an equal fraction of the constant

that was added to the pooled log-likelihood added to them. With these arbitrary constants the
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individual log-likelihoods add exactly to the pooled log-likelihood and, for instance, one can focus

on which log-likelihoods add or subtract to give 0 at the two endpoints of the approximate 95%

con�dence interval. Note that as the likelihood ratio based con�dence interval is based on a drop

from the maximum, addition of any constants to any of the log-likelihoods would not change this.

Once one is satis�ed that a pooled con�dence is sensible, given how the individual log-likelihoods

add and subtract for a given model, the maximum and points at the drop of 2 in the pooled log-

likelihood can be extracted. This plot is referred to as an additive support plot. Of course, more

formal deviance and other heterogeneity tests remain available.

At �rst, it seemed impossible to make such a plot for pro�le log-likelihoods when there was

between study information, i.e. where the optimization needed to be undertaken globally over all

studies to get the true pooled pro�le log-likelihood. But if one thinks of pro�le likelihood as a path

or curve through the full multivariate parameter space (running along the crest for given values of

the interest parameter), one can simply save these multivariate parameter values from the global

optimizations and calculate and plot the individual log-likelihoods along this path. Other possible

paths immediately come to mind. For instance, one could set all of the parameter values other than

the interest parameter to their jointMLEs and take this as a path. A more interesting path would

correspond (at least approximately) to the various meta-analysis methods used in the Cochrane

approach. For instance, for the inverse weighted means meta-analysis approach, the path for the

common mean would correspond to one with the individual group standard deviations set equal

to the sample standard deviations (di¤erent by group within a study) with the arbitrary control

mean maximized or pro�led out. In this way a similar plot can be used to look at the impact of

the various approaches. Perhaps almost as important, these other paths can be used as starting

values for the multivariate optimizations needed to get the �nal global pro�le likelihood path.

Essentially, any probability model can be entertained with these methods. In the examples,

distributional assumptions that provided closed form veri�cations of the various calculations -

such as Beta � Binomial, Normal, Normal � Normal and LogNormal were predominantly

used. Numerous other distributional assumptions were tried from time to time, and seemed to

provide only housekeeping challenges - i.e. being careful about parameterizations, starting values

for optimizations and default methods for numerical integrations. The usual challenges that arise

are the loss of su¢ ciency, the need to simulate the observed summary likelihoods and the loss of

closed form level 2 likelihoods. The simulation of the observed summary likelihoods was greatly
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facilitated by any contrived means to guess at good parameter values under which to simulate the

unconditional samples. These parameter values are arbitrary and the main downside of a poor

choice is ine¢ cient simulation (most of the generated samples are discarded) and highly variable

integrands. In some cases there may be a con�ict between the distributional assumptions and the

reported summaries. For instance in one of the examples the reported group summaries from 24

outcomes were a minimum of :4, a median of 6:5 and a maximum of 150. These are in con�ict with

assumptions of Normally distributed outcomes and sampling from a Normal with mean set equal

to 6:5 and SD set equal to (150� :4)=4 failed to result in one sample with summaries within 75%

of the reported ones in a sample of 100; 000; 000. On the other hand, in this same example, very

close samples were quickly generated using LogNormal assumptions. Such con�icts may not be

so easy to untangle from a poor choice of parameter values to sample from, for other distributions.

The reported maximum was changed to 35 so that the example could be done under Normal

assumptions. The programs to generate these samples needed to be written for the particular mix

of reported summaries and the particular underlying distributional assumptions. The original ones

written in R needed to run overnight while newer ones in written in Mathematica were much more

e¢ cient. Given the number of variations required for the examples, only a few were re-written in

Mathematica.

The envelope numerical integrations bounds for level 2 likelihoods also provided some numerical

challenges. Given that many numerical integrations are needed to discover and verify the intervals

of concavity, these challenges were not unexpected. When the computation time started to become

excessive on a Pentium 4 desktop computer, other computing platforms were investigated. The

usual machines on the Department of Statistics network running Mathematica on Linux actually

took longer. The faster machines such as "blackbird" - a dual AMD 250 64bit processor - was about

50% faster. The cluster of Sun computers at the Ottawa Health Research Institute running under

Solaris were actually much slower - the system administrator suggested that Mathematica may not

have been optimized for Sun computers, as it was only accessing a single processor. Bounding indi-

vidual rather than pooled level 2 likelihoods considerably decreased the required computing time.

As one needs to evaluate con�ict amongst the individual log-likelihoods, these need to be bound in

any case and can be carefully added together to bound the pooled log-likelihood[45]. Another issue

involves the truncation that is currently needed with the envelope numerical integration bounds.

One may need to adjust this to correctly bound the level 2 likelihoods. Perhaps more rigorously,
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Study y n
1 3 20
2 0 17
3 3 37
4 1 80
5 2 78
6 8 84
7 1 37
8 1 79
9 2 213
10 8 121
11 2 35
12 4 272

Table 1: Events observed in similar studies

the envelope numerical integration bounds as currently implemented, truly only bound truncated

level 2 likelihoods and one needs to check that the truncation is not too severe. Also, one may

need to adjust the arbitrary 
 parameter as it needs to be "small enough" and so is not entirely

arbitrary. Some further implementational details are given in appendix F.

5.2 Single group examples

5.2.1 Example 5:1 - binary outcomes

The example involves a number of studies that recorded events. As it is con�dential research only

the numbers are given in Table 1.

A perhaps common but somewhat mistaken approach following Cochrane methods (mentioned

earlier) would be to enter the estimates and their standard errors and undertake a �xed e¤ect and

random e¤ects inverse variance weighted meta-analysis. This is clearly mistaken for �xed e¤ect

because if there is a common proportion, there is a common variance, and the true standard errors

would be equal for equal sample sizes. Using the Meta library for R software[95] we would get

the following standard graph with "diamonds" representing the pooled �xed and random e¤ects

95% con�dence intervals, as shown in Figure 4. The �xed e¤ect 95% con�dence interval was

(:0201; :0451) and the random e¤ects 95% con�dence interval was (:0190; :0614):

An analysis was undertaken using methods from this thesis, �rst for a common proportion (�xed

e¤ect) and then for non-common proportions (random e¤ects) using two di¤erent formal random

e¤ects models. The two formal random e¤ects models used were the Beta � Binomial [29] and
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Figure 4: Standard Cochrane Meta-analysis for Example 5.1

Binomial � Normal[92]. The Beta � Binomial model is available in closed form and facilitates

an exact test of the numerical integration lower and upper bounds. Raindrop plots were used

to display the basic features of the individual and combined log-likelihoods in an earlier version

of this thesis but were found to not transparently display how individual log-likelihoods added

together especially when they were not approximately quadratic. Because of this the additive

support plot as described earlier is now used. Again, where the pooled log-likelihood intersects

the zero line, provides an approximate 95% con�dence interval. A program using a root �nding

algorithm was written in Mathematica to extract the con�dence intervals from a drop of 1:9208 in

the log-likelihood. As these intervals are only approximate, directly extracting con�dence intervals

from these plots, perhaps over a �ner range of values, may be adequate in most applications. When

con�dence intervals are obtained from the root �nding algorithm they are given to four decimal

places. The individual and pooled log-likelihoods for a common proportion, are given �rst and

shown in Figure 5. The approximate 95% con�dence interval would be (:0231; :0444). Note that

studies 6 and 1 essentially completely subtract from the interval of support on the left while studies

9 and 12 mostly subtract on the right.

83



Figure 5: Common Proportion: Individual and Pooled Log-Likelihoods

Figure 6: Random E¤ects Proportion: Individual and Pooled Log-Likelihoods with � set to its
value in the joint MLE

When moving to random e¤ects models there are two parameters and the focus is on the

unconditional mean of the random e¤ects model. The Beta�Binomial model is dealt with �rst.

The �rst "path" displayed in Figure 6 takes the nuisance parameter (here �, with the interest

parameter being �
�+� ) as set equal to its MLE (found by joint numerical optimization). The

approximate 95% con�dence interval would be (:0242; :0616).

The next path is the pro�le path and is shown in Figure 7. The approximate 95% con�dence

interval would be (:0237; :0743). The points on all the individual pro�le log-likelihoods shown in the

plots were bounded with the envelope numerical integration techniques with a maximum negative

gap of �0:000208589 and minimum positive gap of 0:000242802 in approximately 60 minutes.

The example was redone usingNormal�Binomial assumptions. The joint pro�le log-likelihood

path was obtained using Adaptive Guassian Quadrature and the individual and pooled pro�le log-

likelihoods plotted in Figure 8. The approximate 95% con�dence interval would be (:0161; :0566).

The envelope numerical integration con�rmed that these individual log-likelihoods were be-

tween the upper and lower bounds. The maximum negative gap was �0:0116158 and minimum

positive gap was 0:0121057. Here there are no true known log-likelihoods to bound, but this pro-
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Figure 7: Random E¤ects Proportion: Beta-Binomial Individual and Pooled Pro�le Log-
Likelihoods

Figure 8: Random E¤ects Proportion: Normal-Binomial Individual and Pooled Pro�le Log-
Likelihoods

vides numerical assurance that these log-likelihoods are correct - unless the Adaptive Guassian

Quadrature and envelope numerical integration have both failed in a manner consistent with this

pattern. This was a fairly simple meta-analysis situation - there being only one parameter that is

either common or not with two basic choices evaluated for dealing with common in distribution.

In this particular example, the usual Cochrane inverse variance weighted meta-analysis with

weights known to be incorrect (as pointed out earlier), provides very similar �xed e¤ect and random

e¤ects con�dence intervals to the approach of this thesis. Di¤erences do arise in all approaches

between the �xed e¤ect and random e¤ects con�dence intervals - with respect to the upper limit.

The amount, rounded to two decimal places was :04 versus :06 or :07. This may or may not be of

practical importance in a given application. If it is, and there is a strong motivation for the �xed

e¤ect assumption - such as all studies being a random sample from the same source or population

- then the �xed e¤ect con�dence interval should be used. More likely, the studies will have been

undertaken in slightly di¤erent ways and or in di¤erent settings and the assumption of one �xed

proportion will likely be questionable. Here some random e¤ects assumption would often seem

more reasonable. With two di¤erent random e¤ects assumptions for this example we obtained
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two di¤erent upper limits, :06 and :07: Again, this may or may not be of practical importance. If

it is, and there is not some background information favoring one of the two assumptions, further

analyses using other random e¤ects assumptions or a non-parametric random e¤ects approach may

be advisable.

5.2.2 Example 5:2 - continuous outcomes

To investigate whether the parameter that was anticipated to be common was in fact so when

there are also non-common parameters, the likelihood for that common parameter needs to be

separated to the extent possible from the other parameters. The default strategy is to pro�le out

the non-common parameters �that is for

Y
i

L (studyi;�; �i)!
Y
i

L (studyi;�; b�i�) �Y
i

L (studyi;�)

which should be satisfactory if the sample size within the studies is not too small. With small sam-

ple sizes problems may arise with this. (And as can be seen from the asymptotics, the di¤erence be-

tween methods for separating the common parameter of interest needs to be evaluated with respect

to the reasonable number of studies conducted to date and the foreseeable future - small consistent

di¤erences can add to a large di¤erence and this will be a practical problem if there are likely to be

a large number of studies.) It is therefore desirable to try the simulated modi�ed pro�le likelihood

here. First though, it was done for an example from Pawitan[92] on 11 measurements that were as-

sumed to be Normally distributed with values of�5:3;�4:5;�1:0;�0:7; 3:7; 3:9; 4:2; 5:5; 6:8; 7:4; 9:3.

Here the modi�ed pro�le likelihood for both the mean and standard deviation are available in closed

form. The following graph in Figure 9 compares two simulated versions to the true modi�ed and

simple pro�le log-likelihoods. Unfortunately, although the approximations were very promising

here in this single group single study example, it required 5 � 10; 000 replications. A more in-

formed and comprehensive computational strategy needs to be developed for real meta-analysis

examples and is future research.

The example itself involves failure times of air-conditioning units in DC8 jetliners taken from

Sprott[109] where the raw data from each "study" is available and various methods can be tried

out by summarizing the data in various ways. For instance, the times might be summarized us-

ing su¢ cient statistics (that depend on the choices of distributional assumptions), various order

statistics, various linear functions of order statistics, or some mixture of the three. With any of
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Figure 9: Simulated Modi�ed Pro�le Log Likelihoods. Modi�ed - "o", Pro�le - solid line, Simulated
- dashed lines.
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these summarizations, an appropriate or convenient distribution may be assumed, say Normal,

LogNormal, Gamma or Logistic. Not all of these 4 * 4 = 16 choices are equally sensible. For in-

stance, with summaries of means and variances, Normal assumptions are convenient and perhaps

appropriate, with summaries of log means and log variances, LogNormal assumptions would be

arguably be better, while with order statistics, Logistic assumptions would simplify the numerical

calculations involving the distribution functions that are available in closed form. Each choice

involves a two parameter distribution, and a further choice of parameterization may be required to

get commonness of a parameter, focus interest on a parameter or simply for numerical convenience

(i.e. in order to avoid constrained optimizations). Di¤ering assumptions involve di¤ering con-

straints on which parameters can be common while others are arbitrary, for instance with Gamma

assumptions it is the coe¢ cient of variation not the standard deviation that can be common when

the mean is not common over groups/studies[79]. With these speci�cations there are 7 rather

distinct situations, both parameters common, only one parameter common and the other arbitrary

or commonly distributed (4) and both parameters arbitrary or commonly distributed (2).

In some of these speci�cations and summarizations, the raw data likelihood will be directly

available in closed form (e.g. Normal with mean and variance summaries and common mean and

arbitrary variance), for others the observed summary likelihood will be available in closed form

(e.g. Logistic with order statistic summaries and common scale and arbitrary location), while

for others the observed summary likelihood will be available only from an approximation (e.g.

Normal with order statistic and mean summaries and common mean and arbitrary variance).

For speci�cations with commonly distributed parameters, the level 2 likelihood that is needed will

sometimes be available in closed form (e.g. Normal with mean and variance summaries and mean

parameter Normally distributed and variance parameter arbitrary), while more usually it will only

be available via an approximation (e.g. Normal with mean and variance summaries and mean

parameter Logistically distributed and variance parameter arbitrary).

These choices are opportunities, perhaps sometimes �insurmountable opportunities� and in

particular applications they may matter more than one would hope[110]. They represent di¤erent

views of the data, through di¤erent assumptions, obtained more or less directly. In this example, a

few that were easy to verify against closed form solutions were chosen. It is anticipated that most,

if not all, could eventually be implemented with due care, e¤ort and computational resources.

A "package" that easily facilitates the investigation of numerous di¤erent views remains future
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194 413 90 74 55 23 97 50 359 50 130 487 102
15 14 10 57 320 261 51 44 9 254 493 18 209
41 58 60 48 56 87 11 102 12 5 14 100 14
29 37 186 29 104 7 4 72 270 283 7 57
33 100 61 502 220 120 141 22 603 35 98 54
181 65 49 12 239 14 18 39 3 12 5 32

9 14 70 47 62 142 3 104 85 67
169 24 21 246 47 68 15 2 91 59
447 56 29 176 225 77 197 438 43 134
184 20 386 182 71 80 188 230 152
36 79 59 33 246 1 79 3 27
201 84 27 21 16 88 130 14
118 44 42 106 46 230

59 20 206 5 66
29 5 82 5 61
118 12 54 36 34
25 120 31 22
156 11 216 139
310 3 46 210
76 14 111 97
26 71 39 30
44 11 63 23
23 14 18 13
62 11 191 14

16 18
90 163
1 24
16
52
95

Table 2: Failure times of air-conditioning units for 13 DC8 jetliners, one column for each jetliner

research.

The observed failure times for 13 planes are given in Table 2. A standard Cochrane approach

given the individual scores would likely be to take the logs (given access to individual outcomes) and

then base a meta-analysis on a weighted mean di¤erence analysis of the means and sample standard

deviations, as shown in Figure 10. The �xed e¤ect 95% con�dence interval was (3:8196; 4:1297)

and the random e¤ects 95% con�dence interval was (3:7482; 4:2152):

A common choice is to either take logs and use Normal likelihoods or use the outcomes on the

original scale and use LogNormal likelihoods. Initially both were done (as a check on the program

- as the relative likelihoods should be exactly the same) but Normal likelihoods were chosen so that

closed form level 2 Normal �Normal likelihoods would be available as a "test" for the envelope

numerical integration lower and upper bounds. In Figures 11 and 12, the Cochrane "path" pro�le
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Figure 10: Standard Cochrane Meta-analysis for Example 5.2

likelihoods are given as the �rst step, where the standard deviations are taken as known and equal

to the sample standard deviations. The approximate 95% con�dence interval obtained is exactly

the same to four decimal places as from the Meta library in R - (3:8196; 4:1297). An alternative

approximation to the standard Cochrane approach could also be based on taking the standard

deviations as known and equal to their MLEs.

Very similar results were seen with studies 5 and 6 being the main "subtracters" from the

interval of support. The full pro�le path, is then given in Figures 13 and 14, where all of the

parameters (standard deviations) other than that of interest (mean) are maximized out. The

approximate 95% con�dence interval would be (3:7656; 4:1084). There is very little change here,

except for a much less quadratic log-likelihood for study 11 as seen in the global view.

For the formal random e¤ects model the Normal�Normal random e¤ects model perhaps �rst

used by Cochran in 1937[19] was used. The closed form observed summary likelihood was obtained

using algebraic results from C.R. Rao as given in Pawitan[92].

In Figures 15 and 16 the Cochrane path log-likelihoods are given �rst, where the standard

deviations are taken as known and equal to the sample standard deviations and the between study
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Figure 11: Common Mean: Individual and Pooled "Cochrane Pro�le" Log-Likelihoods (global
view)

Figure 12: Common Mean: Individual and Pooled "Cochrane Pro�le" Log-Likelihoods (local view)

Figure 13: Common Mean: Individual and Pooled Pro�le Log-Likelihoods (global view)

Figure 14: Common Mean: Individual and Pooled Pro�le Log-Likelihoods (local view)
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Figure 15: Random E¤ects Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods (global
view)

Figure 16: Random E¤ects Mean: Individual and Pooled Cochrane Pro�le-Log Likelihoods (local
view)

variance taken as known and equal to the DerSimonian-Laird estimate. The approximate 95%

con�dence interval would be (3:7481; 4:2153).

Then the full pro�le path is found by optimization over all studies, and parameters and indi-

vidual and pooled log-likelihoods are plotted along this path, as shown in Figures 17 and 18. The

approximate 95% con�dence interval was again the same (3:7328; 4:2312).

Here a very di¤erent log-likelihood is seen for study 5, but a similar pooled log-likelihood as

Figure 17: Random E¤ects Mean: Individual and Pooled Pro�le Log-Likelihoods (global view)
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Figure 18: Random E¤ects Mean: Individual and Pooled Pro�le Log-Likelihoods (local view)

Figure 19: Closed form (cf) versus simulated observed summary (p) pooled log-likelihoods (local
view - Common Mean: Individual and Pooled Pro�le Log-Likelihoods for Min, Med, Max)

in earlier �gures. It was then con�rmed that the envelope numerical integration lower and upper

bounds did bound all the individual (closed form) log-likelihoods along this pro�le path for a subset

of points (52). This took 43 minutes on a Pentium 4 with a maximum negative gap of �3:37�10�6

and minimum positive gap of 3:85 � 10�6.

These observations were then summarized by the minimum, median and maximum to investi-

gate methods that would be needed for those summaries. Closed form (involving distribution and

density functions) observed summary likelihoods are available for these summaries (exact for odd

n, approximate for even n). Monte-Carlo importance samples were then generated to get pseudo

data for the simulated observed summary log-likelihoods. Two samples for each study with similar

summaries (all within 3%) were obtained in 16 minutes. Study 11 only had 3 observations so these

were matched exactly. Accuracy between the simulated and exact observed summary likelihoods

was strikingly good for the individual log-likelihoods and the full pro�le log-likelihood. The pooled

pro�le log-likelihood plots from both along with individual simulated log-likelihoods are shown in

Figure 19.

The investigation of the accuracy of the simulated observed summary log-likelihoods in a general
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setting remains future research, likely involving importance sampling theory - but here it is very

accurate with even just 2 samples. The envelope numerical integration methods were also run on

both the closed form observed summary likelihoods and the importance sample observed summary

likelihoods. Rather excessive computational time was required for the closed form observed sum-

mary likelihoods which involved derivatives of powers of the Normal Distribution Function (which

grow with the sample size). Currently it is feasible only for small sample sizes. The importance

sample observed summary likelihoods did much better (at least for importance samples of size 2),

taking about 10 times as long as when the raw data was available. Future research will involve

the investigation of more e¢ cient algorithms along with possible parallel computing strategies to

make these computations practical for observed summary likelihoods. As for the example itself,

at least with knowledge of the individual observations, there were very small di¤erences between

�xed e¤ect and random e¤ects con�dence intervals regardless of the approach used to construct

them.

5.3 Two group randomized examples

5.3.1 Example 5:3 - RCTs with means and standard deviations

Here an example from the Cochrane library on pain relief for neonatal circumcision that had 4

studies, all of which gave group means and sample standard deviations is analyzed. This is the

ideal case for the Cochrane approach and considered by many as quite sound even though strong

assumptions of approximate Normality and the treating of unknown variances as known underlie

the methods. The standard approach is given in Figure 20. The �xed e¤ect 95% con�dence interval

was (4:7030; 6:1932) and the random e¤ects 95% con�dence interval was (:5616; 8:3243):

The starting point is a plot of the pro�le likelihood along the Cochrane path - separate standard

deviations for the groups estimated separately by the sample standard deviations and taken as

known. Then the control group means are pro�led out. These are shown in Figures 21 and 22.

The approximate 95% con�dence obtained is exactly the same to four decimal places as from the

Meta library in R - (4:7030; 6:1932).

The full pro�le path is then found by optimizing over all studies and parameters (still allow-

ing separate group standard deviations) and then plotting individual and pooled log-likelihoods

along this path, as shown in Figures 23 and 24. The approximate 95% con�dence interval would

be (2:0648; 4:0417). Note the di¤erence caused by allowing for uncertainty of standard devia-
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Figure 20: Standard Cochrane Meta-analysis for Example 5:3

Figure 21: Common Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods (global view)

Figure 22: Common Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods (local view)
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Figure 23: Common Mean: Individual and Pooled Pro�le Log-Likelihoods (global view)

Figure 24: Common Mean: Individual and Pooled Pro�le Log-Likelihoods (local view)

tions in study 4. This example was also redone using assumptions of equal standard deviations

within a study, as shown in Figure 25. The approximate 95% con�dence interval would then be

(2:6744; 4:8446). Normal �Normal random e¤ects were then done and it is �rst given along the

Cochrane path in Figure 26. The approximate 95% con�dence interval would be (:5984; 8:2593):

Then it is given along the full pro�le path (with common standard deviations) in Figure 27. The

approximate 95% con�dence interval from this would be (:6999; 8:1749). These individual level 2

likelihoods were then bounded by the numerical integration technique for all points (50) along the

path with maximum gaps of �0:0561791 and 0:0568516 observed.

In this example, the log-likelihood from study 4 appeared to be quite di¤erent from the others,

Figure 25: Common Mean and Common Study SD: Individual and Pooled Pro�le Log-Likelihoods
with SDs taken as equal within studies
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Figure 26: Random E¤ects Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods , non-
common SDs within study

Figure 27: Random E¤ects Mean: Individual and Pooled Pro�le Log-Likelihoods, common SD
within study

especially under the �xed e¤ect assumption. This lead to a noticeable di¤erence in the �xed e¤ect

and random e¤ects con�dence intervals, regardless of the approach used to construct them. If

there are strong motivations for making the �xed e¤ect assumption or they are simply maintained

out of principle, the assumption that the standard deviation is known, will have a large e¤ect. On

the other hand, random e¤ects seem more reasonable here, and with that approach, assuming the

standard deviation is known has very little e¤ect. A "negative" (expected) e¤ect was ruled out with

both �xed and random e¤ects assumptions, though with random e¤ects, the size of the expected

e¤ect is much less certain and much more di¢ cult to interpret. As is likely always advisable,

anything that appears quite di¤erent in a statistical analysis should be subject to further checking

and scrutiny. For instance, if study 4 was of higher appraised quality than the others, acceptance

of the negative e¤ect as being ruled out is better supported than if it was appraised as being the

lowest quality study.

5.3.2 Example 5:4 - RCTs with minimums, medians and maximums

It is not uncommon in the clinical research literature that authors use suspected or observed

skewness of outcomes as a factor in their choice of which summary statistics to provide in the
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Study High Dose Low Dose
Slogo¤ 1989 N=254, mean=22:8, sd=12:3 N=248, mean=14:7, sd=5:4
Bell 1994 N=19, median=12:96 N=20, median=4:42
Cheng 1996 N=51, mean=18:9, sd=1:4 N=51, mean=4:1, sd=1:1
Myles 1997 N=66, mean=21:5, sd=5:1 N=58, mean=11:4, sd=9:9
Silbert 1998 N=42, median=7:0, range=(2:1; 19) N=38, median=4:0, range=(0:5; 15:5)
Michalo. 1998 N=72, mean=11:6, sd=1:3 N=72, mean=7:3, sd=0:7
Sakaida 1998 N=20, mean=14:5, sd=4:5 N=20, mean=5:6, sd=1:6
Berry 1998 N=42, median=12:62, range=(8:23; 10:67) N=43, median=1:83, range=(0:1; 4:25)
Myles 2001 N=24, median=9:7, range=(1:1; 25) N=24, median=6:5, range=(0:4; 35=150)

Table 3: Reported summaries for studies in Example 5.5

publication of their RCT results, perhaps having been tutored that skewed distributions are more

appropriately summarized using median and range values (detailing the minimum and maximum).

Unfortunately, the phrase "appropriately summarized" that is often used in statistical textbooks

refers to descriptive rather than "inferential" purposes - skewed distributions are poorly described

by the mean and variance, but the mean and variance can still provide valuable information

about the distribution of outcomes. This can be made fully precise by evaluating the amount of

information contained in the observed summary likelihoods.

In this example, some studies reported group means and standard deviations, others just re-

ported group minimums, medians and maximums and one just reported the group medians. The

data is given in Table 3.

Using methods suggested to impute means and standard deviations from minimum, median and

maximum[66], a standard Cochrane analysis (omitting the study that just reported group medians)

can be done, as shown in Figure 28. The �xed e¤ect 95% con�dence interval was (�8:0634;�7:5199)

and the random e¤ects 95% con�dence interval was (�13:5909;�3:2681):

The studies that reported minimums, medians and maximums are dealt with �rst. The marginal

likelihoods for these studies are available in closed form when the number of observations within a

group is odd, and by numerical integration when it is even. From David[31] the joint distribution

for two or more order statistics is given by

f(y1; y2; :::; yk) =

cPn1�1(y1)p(y1)[P (y2)� P (y1)]n2�n1�1p(y2):::[1� P (y1)]n�nkp(yk)

where c = n!
(n1�1)!(n2�n1�1)!:::(n�nk)! ; (1 � n1 < n2 < ::: < nk � n; 1 � k � n) and y1 � y2 � ::: �
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Figure 28: Standard Cochrane Meta-analysis for Example 5:4

yk: In particular for the minimum, median and maximum with odd n

f(y1; yn=2+:5 ; yn) =

cp(y1)[P (yn=2+:5)� P (y1)]n=2�1:5p(yn=2+:5)[P (yn)� P (yn=2+:5)]n=2�1:5p(yn):

For even n median of y1 � y2 � ::: � yk is no longer an order statistic but conventionally

calculated as (y
n=2

+ y
n=2+1

)=2: If the y
n=2

and y
n=2+1

had been observed, the joint distribution

would be

f(y1; yn=2;yn=2+1; yn) =

cp(y1)[P (yn=2)� P (y1)]n=2�2p(yn=2)p(yn=2+1)[P (yn)� P (yn=2+1)]n=2�2p(yn):

Since y
n=2

and y
n=2+1

have not observed, but (y
n=2

+ y
n=2+1

)=2 has, one can make the change of

variables y = (y
n=2
+ y

n=2+1
)=2 and y

n=2
= y

n=2
and integrate out y

n=2
: This gives

99



f(y1; y; yn) =

c

Z y

�1
p(y1)[P (yn=2)� P (y1)]n=2�2p(yn=2)p(yn=2+1)[P (yn)� P (yn=2+1)]n=2�2p(yn)dyn=2

which cannot be integrated in most cases[3] but can be numerically integrated. This also showed

that using the same formula with n� 1 or n+ 1 for even n provided a close approximation. Thus

for studies that reported group minimums, medians and maximums essentially exact calculations

of the marginal likelihoods are possible. Recall that for simulation of these, the observed maximum

for Myles 2001 was changed from 150 to 35 as indicated in the table.

The study that just reported the sample medians also needs to be explicitly dealt with. Here

any realistic probability model requires at least three parameters, one for each study mean or

location and one for a possibly common variance or scale. (Assumption of a common variance for

di¤erent groups is standard for RCTs, though perhaps less so for meta-analysis). With Normal

assumptions and two summaries (one from each group) such as the group medians, it is well

known that the likelihood will become unbounded as the MLE for �1 and �2 equals the respective

group medians and the MLE for the variance approaches 0[28]. In such a situation, the likelihood

by itself seems incapable of providing information on the variance and hence the "weight" to be

given to the study is undetermined, and the study should be set aside in the meta-analysis [unless

vague informative priors are used]. It is important to check whether the same obviously wrong

scale estimate results from the approach of this thesis. The numerical optimization approach also

easily identi�ed an ever-increasing likelihood for decreasing variances at �̂1 and �̂2 equal to the

respective group medians. Here a closed form observed summary likelihood was available. If this

is not available, there is an additional problem of �nding a good point in the parameter space for

the simulations.

For the studies from the same meta-analysis that reported means and standard deviations,

under assumption of Normality, the observed summary likelihood given these su¢ cient summaries

is a multiple of the likelihood from any sample that has the same mean and standard deviation.

Hence to get the observed summary likelihoods for studies that reported means and standard

deviations, observations with the given means and standard deviations are generated, and the

usual likelihood results from the use of these observations.

Having obtained likelihoods for each of the studies (except the one that just reported medians)

these were then plotted together and combined under the assumption that the di¤erence in means
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was common. The plot shown in Figure 29 shows that the log-likelihoods are not quadratic over

the range where they are to be combined.

Note that the vertical line in all these plots in Figure 29 is the combined MLE of the quadratic

log-likelihoods but that often the pro�le log-likelihoods are not very quadratic there. This highlights

the need for approximations to be good local to the combined maximum and not just the individual

maximums - and perhaps, more generally, for a theoretically motivated approach as in this thesis,

so that such things do not remain unnoticed in practice. As Copas and Eguchi put it,"it is usual to

take these variances as known and to ignore the fact that in practice we use sample estimates".[20]

The new plot was designed to help make these issues more apparent. In these "old" plots the

direction of treatment e¤ect was de�ned in the opposite direction to that of the Cochrane software

and the new additive support plots.

First the log-likelihoods are plotted for the �xed e¤ect approach on the Cochrane path in Figures

30 and 31. The approximate 95% con�dence interval would be (�8:0352;�7:4919). These summary

observed log-likelihoods are based on importance samples rather than closed form formulas. The

pooled exact and importance sample log-likelihoods are compared using the subset of studies that

reported the minimum, median and maximum using a sample size of 2 in Figure 32. Next, in

Figures 33 and 34, the log-likelihoods are plotted along the full pro�le path with common within

study standard deviations. The approximate 95% con�dence interval would be (�5:5825;�4:7525).

Random e¤ects is strongly suggested here and it is �rst shown on the Cochrane path in Figure

35, where the approximate 95% con�dence interval would be (�13:6490;�3:250). It is then shown

on the full pro�le path with common within study standard deviations in Figure 36, where the

approximate 95% con�dence interval would be (�11:0569;�4:4922). The root �nding algorithm

took over 50 hours to determine this particular con�dence interval.

This example was also done using LogNormal assumptions as these are more "natural" for

outcomes constrained to be positive. The full pro�le path is presented in Figures 37 and 38. The

approximate 95% con�dence interval (now for the di¤erence in log means), just visually extracted

from the graphs, would be (�:57;�:50).

In this example, there is again a noticeable di¤erence in the �xed e¤ect and random e¤ects

con�dence intervals, regardless of the approach used to construct them. If there are strong moti-

vations for making the �xed e¤ect assumption or they are simply maintained out of principle, the

assumption that the standard deviation is known, will again have a large e¤ect in this example -
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Figure 29: Comparison of observed summary log likelihoods - o - to their quadratic approximations
- * - over the full range of g(�). Vertical line is the combined quadratic MLE. NOTE - direction of
treatment e¤ect is reversed in these plots and observed maximum in Myles 2001 was 150.
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Figure 30: Common Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods (global view)

Figure 31: Common Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods (local view)

Figure 32: Pooled exact versus importance sample log-likelihoods using sample size 2

Figure 33: Common Mean and Common Study SD: Individual and Pooled Pro�le Log-Likelihoods
with SDs taken as equal within studies (global view)
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Figure 34: Common Mean and Common Study SD: Individual and Pooled Pro�le Log-Likelihoods
with SDs taken as equal within studies (global view)

Figure 35: Random E¤ects Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods

Figure 36: Random E¤ects Mean: Individual and Pooled Pro�le Log-Likelihoods

Figure 37: Common LogMean: Individual and Pooled Pro�le Log-Likelihoods with LogNormal
Assumptions (global view)
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Figure 38: Common LogMean: Individual and Pooled Pro�le Log-Likelihoods with LogNormal
Assumptions (local view)

Study N Mean SD Min Med Max N Mean SD Min Med Max
Maekawa 1993 27 1.67 .65 0.9 3.7 25 1.72 .48 1.00 2.80
Meakin 1985 31 1.3 1.7 6.0 14 1.50 1.8 2.40
Splinter 1990 30 1.70 .60 1.3 1.5 4.2 31 1.70 .60 1.20 1.5 4.00
Welborn 1993 41 1.45 1.3 1.6 43 1.41 0.93 1.65
vanderWalt 1986 17 1.5 5.0 13 1.50 7.00

Table 4: Reported summaries for studies in Example 5.5, Rx in right columns, Pl left

the con�dence intervals do not even overlap here. If random e¤ects are assumed, the assumption

that the standard deviation is known in this example, does still have an e¤ect - it actually narrows

the con�dence interval. This time a "positive" (expected) e¤ect was ruled out with both �xed and

random e¤ects assumptions, though again with random e¤ects, the size of the expected e¤ect is

much less certain and much more di¢ cult to interpret. The log-likelihoods under the �xed e¤ect

assumption seem to vary considerably, though all but one supported "positive" over "negative"

e¤ects. (Recall that Myles 2001 with the actual reported maximum had a negative MLE). Log-

likelihoods under LogNormal �xed e¤ect assumption were considered as a possible alternative but

still seemed to vary considerably. Formal rules for addressing such an apparent lack of replication,

as in this example, seem elusive.

5.3.3 Example 5:5 - RCTs with various reported summaries

In another systematic review, some studies reported group minimums, means and maximums, and

joint marginal distributions for these summaries are not readily available[3]. To address this, there

was no choice but to use the importance sampling observed summary likelihoods. Table 4 gives the

summaries of the 5 studies that reported reported various combinations of group means, standard

deviations, minimums, medians and maximums.

Simple imputation of means and standard deviations based on available information and rules
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Figure 39: Standard Cochrane Meta-analysis for Example 5:5

from Hozo[66] allows standard meta-analysis methods to be carried out using imputed means

and sample standard deviations. This is shown in Figure 39. The �xed e¤ect 95% con�dence

interval was (�:2002; :1737) and the random e¤ects 95% con�dence interval was exactly the same

(�:2002; :1737):

First assumptions of Normally distributed outcomes and a �xed e¤ect were used and importance

sampling was then used to get the observed summary likelihoods. Under these assumptions, for

studies that reported the means and sample standard deviations only a single sample that has

exactly that mean and sample standard deviations was needed and there is no need to condition

on any other reported summaries.

Again, the log-likelihoods for the �xed e¤ect approach are �rst plotted on the Cochrane path

using an importance samples of size 2 in Figure 40. The approximate 95% con�dence interval

would be (�:2027; :1722).

Then a plot along a full pro�le path, with common group standard deviations, is shown in

Figure 41. The approximate 95% con�dence interval would be (�:0694; :0939).

This example was also done using a LogNormal assumption as this is more "natural" for
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Figure 40: Common Mean: Individual and Pooled Cochrane Pro�le Log-Likelihoods

Figure 41: Common Mean: Individual and Pooled Pro�le Log-Likelihoods, common SDs

outcomes constrained to be positive. Under this assumption, the full pro�le path is plotted in

Figure 42. The approximate 95% con�dence interval (now for the di¤erence in log means) would

be (:0176; :1024). Note, not only have the log-likelihoods become more quadratic, the pooled log-

likelihood provides an approximate 95% con�dence interval that excludes the null. Random e¤ects

are not suggested from these plots and analyses were only undertaken for Normal � Normal

assumptions which con�rmed the between study variation was very small, if not zero. Special

methods are given in appendix D for obtaining theMLE when the between study variation is very

small.

In this example, imputations were required to undertake standard Cochrane analyses. These

Figure 42: Common LogMean: Individual and Pooled Pro�le Log Likelihoods
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seemed adequate when the standard deviation was taken as known. With the standard Cochrane

analyses, there was no noticeable di¤erence in the �xed e¤ect and random e¤ects con�dence in-

tervals. Allowance for uncertainty in the study standard deviations lead to a narrower �xed e¤ect

con�dence interval. The log-likelihood for study 4 was more concentrated than the others and

multi-modal. Given this, the log-likelihoods suggested little need for random e¤ects assumptions

and were centered about 0. When the example was redone under a LogNormal assumption,

study 4�s log-likelihood was much more quadratic. The �xed e¤ect con�dence interval under the

LogNormal assumption now excluded 0: Had the study observations been available, it would likely

not have been at all controversial to take a log transformation. This is a well known standard prac-

tice in applied statistics when observations are constrained to be positive and likely skewed. With

this transformation, one would have likely arrived at very similar conclusions. With the approach

of this thesis, the same can be achieved by making a LogNormal assumption and obtaining the

observed summary likelihood.

6 Conclusions and future research

In this thesis parametric statistics have been viewed as the investigation and synthesis of individual

observation likelihoods. This motivated a generic strategy for the investigation and synthesis of

repeated or similar randomized clinical trials, often referred to as meta-analysis or systematic

review. The generic strategy relied on the realization that the observed summary likelihood, given

what summaries were obtainable from the trials, was the basic ingredient for this investigation

and synthesis. Working with this, some commonness of a parameter of interest 
(�) was sought,

where commonness may only mean common in distribution. The investigation and synthesis was

then carried out via likelihood with focussed inference via pro�le likelihood-based approximate

con�dence intervals. The observed summary likelihood approach was identi�ed earlier for meta-

analysis of mixed continuous and dichotomous responses by Dominici and Parmigiani[39], called

a latent-variables approach and a fully Bayes approach implemented but a Classical approach

abandoned. The reasons cited for this were the di¢ culty of deriving exact con�dence intervals

from likelihoods versus the straightforwardness of obtaining credible intervals without resorting to

asymptotic approximations. By choosing just the Bayesian approach on examples where observed

summary likelihoods are readily available in closed form, considerable computational burden was

avoided. This thesis, on the other hand, undertook a Classical approach as well as provided a
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general means for obtaining observed summary likelihoods (which had been lacking for the Bayesian

approach). MCMC implementations of Bayesian analysis do not require level 2 likelihoods, though

some suggest that would still be useful in Bayesian approaches[12] and the envelope lower and

upper bounds would be useful there.

The statistical and meta-analysis literature has failed to inform clinical researchers about the

perils of summarizing data in their research reports. Both the applied and theoretical literature

tend to be misleading here. The applied literature, which suggests that medians and quartiles

are appropriate summaries for skewed distributions and means and variances are not, has lead

to an uninformative choice of limited summaries being reported. The theoretical literature has

suggested that su¢ ciency and probability models that admit su¢ cient statistics of dimension less

than number of observations are important concepts that have a role to play in what should be

reported and what class of models are useful. Fisher was as misleading as any here, suggesting

that the log-likelihood (su¢ cient) be reported in studies so that the studies could later be com-

bined by simply adding up their log-likelihoods. Cox makes a similar suggestion involving pro�le

likelihoods[27]. These suggestions assume complete certainty of the probability model assumed by

the investigators - if this should di¤er between them or at any point come under question (i.e. such

as when a consistent mean variance relationship is observed over many studies when assumptions

were Normal) - the observed summary log-likelihood under the new model given the reported

log-likelihood from the assumed model - would have to be simulated or derived for the studies

to be properly contrasted and combined. The simulation of general reported summaries, such as

a likelihood function, an observed p_value, etc. remains future research. Of particular interest

are studies reporting various summaries from survival analysis, especially when strati�cation was

pre-speci�ed but largely only limited strata summaries are provided. A much better solution for

all concerned would be the archiving of the data, or the reporting of as many order statistics as

con�dentiality (and the journal editor) will allow. This has to be by relevant grouping, i.e. simply

by treatment and control if unstrati�ed but separately by strata if strati�ed.

Some are suggesting that more generally, su¢ cient statistics of dimension less than number

of observations are simply a misleading distraction for the theory of statistics[55]. From the

perspective of this thesis, they are seen as a trivial consequence of the observed summary likelihood

being a multiple of the likelihood from any sample that had the same value for the su¢ cient

statistics. In terms of the Monte-Carlo simulation of observed summary likelihoods (up to a
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multiplicative constant), the variance is zero and so the simulation approximation is exact. This

may be an important advantage of convenience, but only if the original sample is not available!

However, this should not distract from the role of su¢ ciency in separating evaluation of model �t

from that of parameter estimation[27].

Further, with models that involve nuisance scale parameters such as within study variances, the

danger of assuming these are known has been underestimated for both �xed and random e¤ects

models, for instance as in Cox[24] and the "bad interaction" of pro�ling out the unknown scale

parameter and robust adjustments for random e¤ects models needs to be pointed out - Sta¤ord�s

adjustment may actually make things worse. This thesis has identi�ed it as a potentially serious

issue for meta-analysis. A conjecture recently made by David Andrews in his 2006 Statistical

Society of Canada Gold Medal address, along with another means to adjust in particular the 95%

pooled log-likelihood-based con�dence interval, remains future research.

Pro�le likelihood has been heavily relied on in this thesis. Pro�ling out nuisance parameters can

result in problematic inference with sparse data and it is hard to de�ne sparseness. To address this,

the investigation of simulated modi�ed pro�le likelihood was suggested and a simple demonstration

in a "toy" example was carried out. Further, numerically challenging work remains to be carried

out for real examples.

The work in this thesis would suggest that those undertaking meta-analysis initially start with

a standard Cochrane approach, perhaps using the convenient Meta package provided in R. Simple

imputations of means and standard deviations for studies that do not provide these summaries,

would also be a reasonable starting point as would the approximate Normal � Normal random

e¤ects model implemented using the DerSimonian-Laird estimate of the between study variance.

This approximate initial analysis allows a simple view of the contrast and combination of study

results and provides starting values for a more rigorous model-based analysis - but it needs to be

checked against a more rigorous model-based analysis. This more rigorous model-based analysis

should use observed summary likelihoods and level 2 likelihoods as basic ingredients and (try to)

globally pro�le out all nuisance parameters to focus on a pooled con�dence interval for the common

parameter of interest. Alternatively, a Bayesian approach could be used along with observed sum-

mary likelihoods. A number of distributions for both the outcomes and random parameters should

be considered. This may not be computationally feasible for some meta-analysis and suboptimal

analyses may need to be accepted (i.e. study-wise pro�ling out of nuisance parameters or limited
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use of distributions). If the practical results of the initial analyses hold up to the more rigorous

analyses, then they may be useful simpler views of the contrast and combination of study results.

Otherwise, they are importantly misleading and should be abandoned or retracted. On the other

hand, it is important to consider that the di¤erence, especially mutli-modality in the likelihoods,

may be a sign of poor model �t[27], and the more rigorous analyses done on more reasonable

assumptions.

The thesis was directed at ideally conducted randomized clinical trials, where as this is seldom

the case in practice. However, it is considered worthwhile to know what to do in an ideal setting

prior to dealing with a less ideal setting. Some discussion of sensitivity analysis was given for

informative selection by authors, of which summaries to make available and the possible need for

sensitivity analysis using informative priors was pointed out. Although beyond the scope of this

thesis, a recent example of such work for non-randomized studies and meta-analysis is given in

Greenland [59][60] and Copas and Eguchi[20].

The conceptual value of viewing parametric statistics as the investigation and synthesis of

single observation likelihoods may be of some value outside meta-analysis applications per se. The

recasting of recent work by Tibshirani and Efron was presented as a possible example of this. This

is a di¢ cult point to be certain of, as conceptual value is in the eye of the "conceptualizer".
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A Evasions of nuisance parameters in general

Here, more generally, some suggested strategies for dealing with nuisance parameters in inference

will be reviewed from the statistical literature that has arisen since Neyman-Scott�s paper. Intu-

itively, the heart of the issue of dealing with unknown nuisance parameters is to "evade" them by

constructing something like a likelihood - say pseudo-likelihood - that does not explicitly involve

the nuisance parameters but captures all of the relevant information "just about" the interest pa-

rameter(s) from the full likelihood (that did in fact involve the nuisance parameters) and such that

this pseudo-likelihood has the usual properties of a likelihood (where such evasions were not taken.)

Asymptotic consistency and e¢ ciency of MLE for the interest parameter and at least consistency

of variance of the MLE are perhaps the most important features to insist upon. Such evasions

would be a real achievement and would greatly simplify meta-analysis (as well as many other areas

of statistics) but this turns out to be possible only in certain situations which have resisted full

generalization. "Partial" generalizations, where they have been made, are di¢ cult to analytically

implement in common practice[89] and current work on Monte-Carlo approaches (such as the one

identi�ed) is in need of further development. Notation from Sprott[109] to look at a select few but

important evasions to get a sense of the possibilities and issues will be used.

Conditional evasion

L(�; �; y) / f(�; �; y) = f(�; �; t)f(�; yjt)

/ Lres(�; �; t)Lc(�; y)

where t is chosen so that f(�; �; t) = f(�; t) or f(�; �; t) � f(�; t) and then one just uses

L(�; y) � Lc(�; y)

for the likelihood for �.

Marginal (over sample) evasion

L(�; �; y) / f(�; �; y) = f(�; t)f(�; �; yjt)

/ Lm(�; t)Lres(�; �; y)
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where t is chosen so that f(�; �; yjt) = f(�; yjt) or f(�; �; yjt) � f(�; yjt) and then one just uses

L(�; t) � Lm(�; t)

for the likelihood for �.

The success of these two evasions depends on how much information for � is in Lres. For

certain classes of probability models - exponential (using certain parameterizations) and location

scale, these evasions are considered very successful. As they both arise from probability models

(for subsets of the data) they are true likelihoods and hence they have the usual properties.

Maximized (over parameter) evasion - the pro�le likelihood is

Lp(�; �; y) = L(�; �̂(�); y)

where �̂(�) is the MLE of � for a given value of �. Then one just uses

Lp(�; y) � L(�; �̂(�); y)

for the likelihood for �:

Note in e¤ect the likelihood is conditioned on �̂(�) as if it were known when in fact it is not. The

pro�le likelihood is known sometimes to provide asymptotically inconsistent or ine¢ cient MLEs

for the parameter of interest. It is suspected that this happens mostly when �̂(�) is poorly esti-

mated due to small sample size - the Neyman-Scott examples being the canonical examples of this.

On the other hand, this evasion can be very widely applied, being "mechanical" or numerically

implemented, and it is known to approximate the two previous successful evasions where those are

available. Modi�cations are available for the pro�le likelihood to improve this approximation but

again are di¢ cult to analytically apply (widely) in practice[89]. Again, we identi�ed approxima-

tions that are available via Monte-Carlo simulation and o¤er some promise to becoming widely

applicable.

Marginal (over parameter) evasion

LMp(�; y) =
R
L(�; ��; y)p(��)d��

where � is integrated out with respect to p(��) which represents physical random variation of ��.
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This is referred to as a level 2 likelihood in this thesis. Again, this needs to carefully distinguished

from a conceptual (Bayesian) representation of the uncertainty of � (not necessarily a random

variable) which gives LI(�; y) in the special case of p(�) being uniform LIu(�; y) (often referred to

as simply the integrated likelihood). For ��i being considered a sample from a common distribution

of p(��) one would have

LMp(�; y) =
R
���
R
L(�; ��1; y)p(�

�
1):::L(�; �

�
n; y)p(�

�
n)d�

�
1:::d�

�
n

or more conveniently

L(�; y) =
R
L(�; ��1; y)p(�

�
1)d�1:::

R
L(�; ��n; y)p(�

�
n)d�

�
n
:

Note p(��1; �
�
2) = p(��1)p(�

�
2) has been considered as the interest in meta-analysis and it is usual to

assume the "random samples" of the treatment e¤ect are independent from study to study.

B Generalized likelihood

Given this need for random e¤ects models with unobserved random parameters, generalized like-

lihood is now brie�y discussed. In Bjornstad[13], a generalization of the likelihood is given where

"unobservables" which may consist of random parameters (or variables to be predicted - though

these are of little direct interest in this thesis) are explicitly denoted by  to distinguish them

from �xed unknown parameters �. Various quantities of interest for statistical inference - � which

are functions of  , i.e. � = f( ) are also explicitly denoted. With this he de�nes the complete

speci�ed probability model as

Pr = ff�(y; ��); � 2 �g

where unobserved random parameters �� and �xed unknown parameters � both enter but "sepa-

rately". He then de�nes the generalized likelihood as

Ly(�; �) = f�(y;�)

where the unobserved random parameters �� do not enter directly except through the function

� = f(��) - that again denotes the quantities of interest that involve ��. Given this de�nition, he
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points out the following:

1. The part of �� that is not of inferential interest is integrated out. For example, if no part of

�� is of interest, then �� is integrated out completely and Ly(�) = f�(y), the usual parametric

likelihood [in our case, usually study speci�c random e¤ects].

2. We do not condition on the variable, �, of interest.

3. The �xed unknown � must be included in the likelihood whether or not � is of inferential

interest.

The force of these claims depends on Bjornstad�s generalization providing a likelihood for which

Birnbaum�s theorem generalizes. Birnbaum�s theorem establishes that principles of su¢ ciency and

conditionality imply the (strong) likelihood principle. Intuitively, this can be expressed as the

essential idea that statistical inference should be based on all relevant information and not any

non-relevant information (su¢ ciency being the all and conditional being the relevant). Now the

likelihood principle is not universally or even widely accepted and hence it is far from ideal or

convincing to use it to resolve the controversy of whether unobserved random parameters should

be integrated out of the likelihood when they are not of direct interest - i.e. when the interest is

primarily in the parameters of the higher level distribution. Having made the controversy clear,

we do however use Bjornstad�s generalization for the purposes of this thesis.

C Single observation inference examples

Starting with single observations and single unknown parameters it is possible to motivate deviance

residuals and deviance and demonstrate single observation "inference". Then with single observa-

tions and multiple unknown parameters it is possible to motivate estimated and pro�le likelihood

and demonstrate single observation "inference" for multiple parameters. A quantitative evaluation

of commonness succeeded or failed based on the assumed model and or parameter of interest. It

is though, demonstrated that it is the likelihood from the assumed probability distribution that

generated what was observed, that �tells� one what is the �best� combination of observations,

given the parameters were common or common in distribution and provides at least a qualitative

assessment of the commonness of the parameters.
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C.1 Example 4:1 - Bernoulli distribution

The situation of binary outcomes with a common proportion is perhaps the simplest situation

to deal with but also the least satisfying or informative (given only one group and no order of

observation information). Likelihood is p for observed success and (1 � p) for an observed failure

giving py(1� p)1�y where y = 1; 0 for a success or failure respectively. Plots or functions of these

are not likely to facilitate an informative investigation about whether p was actually common. Over

all observations one could check how relatively less probable a common p makes the observations

than a separate pi for each observation i.e.

Qn
i=1 p

yi(1� p)(1�yi)Qn
i=1 p

yi
i (1� pi)(1�yi)

:

Using the maximum likelihood estimates under both assumptions the relative probability is

p
Pn

i yi(1� p)(n�
Pn

i yi)

(recall that p0 � 1 for all p in py(1� p)1�y). Given that this is just a function of n and
P
yi, it is

not helpful for investigating commonness.

Rather than directly focusing on how relatively less probable a common p makes the observa-

tions than a separate pi, we can derive some familiar likelihood-based residuals and the so called

goodness of �t statistic. First the log-likelihood is used

l (p; yi) = yi log(p) + (1� yi) log(1� p)

and the simple di¤erence between the maximum of each used

nX
i=1

l (bpi; yi)� nX
i=1

l (bp; yi)
=

nX
i=1

fl (bpi; yi)� l (bp; yi)g
where (bpi; bp) are the values that make the observations observed most probable and the subtraction
is de�ned to make the result positive.

A simple re-scaling of this is formally called the deviance (in generalized linear models for
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instance) and is de�ned as

dev (bp; bpi; y) = 2 nX
i=1

fl (bpi; yi)� l (bp; yi)g
and one may wish to look at the components of this individually, i.e.

2fl (bpi; yi)� l (bp; yi)g
and a function of this

sign(bpi � bp)p2fl (bpi; yi)� l (bp; yi)g
is formally called the deviance residual.

In this example

2fl (bpi; yi)� l (bp; yi)g
= 2fyi log(bpi) + (1� yi) log(1� bpi)� yi log(bp) + (1� yi) log(1� bp)g

which with bpi replaced with yi and bp replaced by �y (the MLEs respectively)

= 2fyi log(yi) + (1� yi) log(1� yi)� yi log(�y) + (1� yi) log(1� �y)g

= 2f�yi log(�y) + (1� yi) log(1� �y)g

= �2 log(�y) for yi = 1 and 2 log(1� �y) for yi = 0:

In terms of the deviance

2
nX
i=1

fl (bpi; yi)� l (bp; yi)g
= 2

nX
i=1

fyi log(bpi) + (1� yi) log(1� bpi)� yi log(bp) + (1� yi) log(1� bp)g
which with bpi replaced with yi and bp replaced by �y (the MLEs respectively)
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2
nX
i=1

fyi log(yi) + (1� yi) log(1� yi)� yi log(�y) + (1� yi) log(1� �y)g

= 2
nX
i=1

0� 2
nX
i=1

fyi log(�y) + (1� yi) log(1� �y)g

= 2 log(�y)
nX
i=1

yi + 2 log(1� �y)
nX
i=1

(1� yi)

= 2 log(�y)n�y + 2 log(1� �y)(n� n�y):

Again, given that it is just a function of n and �y, it is not helpful for investigating commonness.

Note the attempt was to directly assess the commonness of the parameter, not for instance whether

the observed data seems like a reasonable sample from the given probability model. Combination

is by multiplication i.e. p
Pn

i yi(1� p)
Pn

i 1�yi where yi are the multiple observed outcomes.

When the p arbitrarily varies by observation the multiplication simply gives

nY
i=1

pyii (1� pi)(1�yi):

But if the p come from a common distribution , say, f(�) � 2 � then for the level 2 likelihood

Z 1

0

�y(1� �)1�yf(�)d�

say, f�(�) a multiplication does provide a combination (for the common parameters in f�(�)). As

a convenient example if � has the beta density,

���1(1� �)��1 � (�+ �)
� (�) � (�)

we have that

p(y) =

�
1

y

�Z 1

0

�y(1� �)1�y���1(1� �)��1d� � (�+ �)
� (�) � (�)

=
� (1 + 1)

� (y + 1)� (1� y + 1)

Z 1

0

�y+��1(1� �)(1�y)+��1d� � (�+ �)
� (�) � (�)

=
� (1 + 1)

� (y + 1)� (1� y + 1)
� (y + �) � (1� y + �)

� (1 + �+ �)

� (�+ �)

� (�) � (�)
:
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Note that with this marginal likelihood the multiplication results in the combination of � and �

nY
i=1

�(1 + 1)�(yi + �)�(1� yi + �)�(�+ �)
�(yi + 1)�(1� yi + 1)�(1 + �+ �)�(�)�(�)

:

Under this distribution the expectation of yi is �=(� + �) but unfortunately as yi can only take

values zero and one, the variance equals p � p2 and similarly all higher moments are functions of

p so � and � are unidenti�able (various values of � and � give rise to same distribution).

C.2 Example 4:2 - Gaussian distribution with known scale

Perhaps the next simplest probability model to work with in this manner is the Gaussian distrib-

ution with known scale

f
�
yi;�; �

2
0

�
= (2��20)

�1=2e�(yi��)
2=2�20

L (�; yi) = c(�20)
�1=2e�(yi��)

2=2�20

and for convenience we will take logarithms

logL (�; yi) = � 1

2�20
(yi � �)2 + log(c)

l (�; yi) = � 1

2�20
(yi � �)2 + log(c):

Note the log-likelihood l (�; yi) is a second degree polynomial that is straight forward to add and

�nd the maximum of. They can be plotted to graphically investigate if the log-likelihoods support

a common �.

In this example the deviance components are

2fl (�̂i; yi)� l (�̂; y)g

= 2f� 1

2�20
(yi � �̂i)2 +

1

2�20
(yi � �̂)2g

which with �̂i replaced with yi and �̂ replaced by �y (the MLEs respectively)
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= 2f� 1

2�20
(yi � yi)2 +

1

2�20
(yi � �y)2g

= 2f 1

2�20
(yi � �y)2g

=
1

�20
(yi � �y)2:

Here the deviance provides an informative quantitative assessment of commonness of �.

dev (b�; b�i; y) = 2
X
i

fl (yi; b�i)� l (yi; b�)g
=

X
i

1

�20
(yi � �y)2

C.3 Example 4:3 - Laplacian distribution with known scale

Another simple probability model is a Laplacian distribution also with known scale

f (yi;�; �0) =
1

2�0
e�jyi��j=�0

L (�; yi) = ce�jyi��j=�0

l (�; yi) = �jyi � �j=�0 + log(c)

Here the log-likelihood is �jyi � �j=�0 a triangular function with maximum at � = yi. They

can also be plotted to graphically investigate if the log-likelihoods support a common �. In this

example the deviance components are

2fl (�̂i; yi)� l (�̂; yi)g

= 2f�jyi � �̂ij=�0 + jyi � �̂j=�0g

which with �̂i replaced with yi and �̂ replaced by the median y (the MLEs respectively)

= 2f�jyi � yij=�0 + jyi � yj=�0g

= 2jyi � yj=�0:
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Here again the deviance provides an informative quantitative assessment of commonness of �.

dev (�̂;�̂i; y) = 2
X
i

fl (�̂i; yi; �0)� l (�̂; yi; �0)g

= 2
X
i

jyi � yj=�0:

C.4 Example 4:4 - Gaussian distribution with unknown mean and un-

known scale

The only other probability distribution to be looked at with single outcomes is Gaussian distrib-

ution with unknown mean and unknown scale. With more than one parameter multidimensional

surfaces have to be dealt with

f
�
yi;�; �

2
�
= (2��2)�1=2e�(yi��)

2=2�2

L
�
�; �2; yi

�
= c(�2)�1=2e�(yi��)

2=2�2

l
�
�; �2; yi

�
= �1

2
log �2 � 1

2�2
(yi � �)2 + log(c):

They can be plotted to graphically investigate if the log-likelihoods support a common � and �.

The likelihood here is unbounded at (� = yi; � = 0) and so also would be the deviance which is a

function of it. But as yi has only been observed to some level of accuracy, the observed summary

likelihood -
R yi+�
yi�� L (�; �; yi) dyi needs to be used and with this correct likelihood the MLE of � is

a function of � and reaches a �nite maximum for � small relative to �[28].

C.4.1 Example 4:4 - Estimated likelihood

Given the likelihood for the Gaussian distribution with unknown mean and unknown scale involves

two parameters and sensible estimates of both are not available from just one observation, it might

be sensible to initially forgo the investigation of commonness and just assume it tentatively in

order to get initial sensible estimates of both parameters. That is multiply the likelihoods for

the observations together and get the joint MLE for the two parameters. Then one could take

one parameter as known (in turn) and return to the single observation likelihoods for the other

parameter. For this we will want to start with the combination

L
�
�; �2; y

�
= c(�2)�n=2e�

Pn
i (yi��)

2=2�2
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and for convenience we will take logarithms

logL
�
�; �2; y

�
= �n

2
log �2 � 1

2�2

nX
i

(yi � �)2 + c:

Taking derivatives of logL (y;�; �) we obtain what are referred to as score functions

S1
�
�; �2; y

�
=

@

@�
logL

�
�; �2; y

�
=
1

�2

nX
i

(yi � �)

S2
�
�; �2; y

�
=

@

@�2
logL

�
�; �2; y

�
= � n

2�2
+

1

2�4

nX
i

(yi � �)2:

Equating these to zero yields the joint MLEs

�̂ = �y

�̂2 =
1

n

nX
i

(yi � �y)2:

The question of commonness of �2 can be left aside (for now) by taking it as equal to �̂2 from

the joint MLE
�
�̂; �̂2

�
and assess, evaluate and combine single observations just for �.

l (�; yi) =
1

2�̂2
(yi � �)2

= � 1

2 1n
Pn

i (yi � �y)2
(yi � �)2:

In this example the deviance components are

2fl (�̂i; yi)� l (�̂; yi)g

= 2f� 1

2 1n
Pn

i (yi � �y)2
(yi � �̂i)2 +

1

2 1n
Pn

i (yi � �y)2
(yi � �̂)2g

which with �̂i replaced with yi and �̂ replaced by �y (the MLEs respectively)

= 2f� 1

2 1n
Pn

i (yi � �y)2
(yi � yi)2 +

1

2 1n
Pn

i (yi � �y)2
(yi � �y)2g

= 2f 1

2 1n
Pn

i (yi � �y)2
(yi � �y)2g:
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Here the deviance does not provide an informative quantitative assessment of commonness of �,

and of course is based on using b� = y to estimate �2

dev (b�; b�i; y) = 2
nX
i

fl (yi; b�i)� l (yi; b�)g
= 2

nX
i

1

2 1n
Pn

i (yi � �y)2
(yi � �y)2

=
nPn

i (yi � �y)2
nX
i

(yi � �y)2

= n:

Alternatively, the question of commonness of � can be left aside (for now) by taking it as equal

to �̂ and assess, evaluate and combine single observations just for �2.

l
�
�2; yi

�
= �1

2
log �2 � 1

2�2
(yi � �̂)2

= �1
2
log �2 � 1

2�2
(yi � �y)2:

In this example the deviance components are

2fl
�
�̂2i ; yi

�
� l
�
�̂2; yi

�
g

= 2f�1
2
log �̂2i �

1

2�̂2i
(yi � �y)2 +

1

2
log �̂2 +

1

2�̂2
(yi � �y)2g

which with �̂2i replaced with (yi � �y)2 and �̂2 replaced by 1
n

Pn
i (yi � �y)2 (the MLEs respectively)

= 2f�1
2
log(yi � �y)2 �

1

2(yi � �y)2
(yi � �y)2

+
1

2
log

1

n

nX
i

(yi � �y)2 +
1

2 1n
Pn

i (yi � �y)2
(yi � �y)2g

= 2f�1
2
log(yi � �y)2 �

1

2

+
1

2
log

1

n

nX
i

(yi � �y)2 +
1

2 1n
Pn

i (yi � �y)2
(yi � �y)2g

= f� log(yi � �y)2 � 1 + log
1

n

nX
i

(yi � �y)2 +
1

1
n

Pn
i (yi � �y)2

(yi � �y)2g:

Here the deviance does provide an informative quantitative assessment of commonness of �2
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dev
�
�̂2; �̂2i ; y

�
= 2

X
i

fl
�
�̂2i ; yi

�
� l
�
�̂2; yi

�
g

= 2
X
i

f�1
2
log(yi � �y)2 �

1

2
+

1

2
log

1

n

nX
i

(yi � �y)2 +
1

2 1n
Pn

i (yi � �y)2
(yi � �y)2g

=
X
i

f� log(yi � �y)2 � 1

+ log
1

n

nX
i

(yi � �y)2 +
1

1
n

Pn
i (yi � �y)2

(yi � �y)2g

= n log
1

n

nX
i

(yi � �y)2 �
X
i

log(yi � �y)2 � n+ n

= n log(
1

n

nX
i

(yi � �y)2)�
X
i

log(yi � �y)2:

This process of taking "all else equal" and investigating one aspect at a time has been a

pragmatically useful device in science. Formally in statistics, likelihoods with unknown parameters

replaced by estimates (usually MLEs) are called estimated likelihoods, although the motivation to

do single observation inference probably played no part in their development.

C.4.2 Example 4.4 - Pro�le likelihood

For reasons that will be clearer later, a slightly di¤erent way to replace an unknown parameter,

say �2 with an estimate and treat it as known would be to replace it with an estimate based on a

given value of � (a "best estimate" given that value of �) in particular with the MLE given that

value of �, with suggestive notation for this being �̂2�. In the score equation for this the � is taken

as �xed, and hence it only depends on �2

S
�
�2; y

�
=

@

@�2
logL

�
�2; y

�
= � n

2�2
+

1

2�4

nX
i

(yi � �)2

and setting this equal to zero results in

�̂2� =
1

n

nX
i

(yi � �)2:

Replacing �2 with this equation in the log-likelihood results in
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l (�; yi) =
1

2�̂2
(yi � �)2

= � 1

2 1n
Pn

j (yj � �)2
(yi � �)2:

(Note the use of index j for the summation involving all observations in the group.)

In this example the deviance components are

2fl (�̂i; yi)� l (�̂; yi)g

= 2f� 1

2 1n
Pn

j (yj � �̂i)2
(yi � �̂i)2 +

1

2 1n
Pn

j (yj � �̂)2
(yi � �̂)2g

which with �̂i replaced with yi and �̂ replaced by �y (the MLEs respectively)

= 2f� 1

2 1n
Pn

j (yj � yi)2
(yi � yi)2 +

1

2 1n
Pn

j (yj � �y)2
(yi � �y)2g

= 0 +
1

2 1n
Pn

i (yi � �y)2
(yi � �y)2g:

And the deviance then is

dev (�; b�i; y) = 2
X
i

fl (yi; b�i)� l (yi; b�)g
= 2

X
i

f0 + 1

2 1n
Pn

i (yi � �y)2
(yi � �y)2g

= n

which again, as with the estimated likelihood, is still not helpful in assessing the commonness of

�.

The same could be considered for � (replacing it with b��2)
S (�; y) =

@

@�
logL (y;�) =

1

�2

nX
i

(yi � �) = c
nX
i

(yi � �)

which, regardless of the value of �2, has MLE �y so it is simply the same as the estimated likelihood.

This alternative way of getting one dimensional likelihoods is formally called pro�le likelihood.
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D Neyman and Scott examples

Interestingly, meta-analysis problems from astronomy (Neyman & Scott)[81] originally drew at-

tention to the challenge of dealing with common and non-common parameters via parametric

likelihood with a relatively small number of observations per non-common parameter. In particu-

lar they looked at pairs of observations. It may be important to keep in mind that meta-analyses

in clinical research seldom, if ever, face the same degree of challenge as was faced in astronomy

where a large number of very small studies were encountered, but the problems are still instructive.

The most important lesson is perhaps that it is the number of studies that can be foreseen, not

just the number in hand, that needs to be considered when evaluating methods of summarizing

for future analysis and eventually undertaking that �nal analysis.

In two of the three problems Neyman & Scott addressed, there were repeated studies that all

had two observations. In the �rst problem the mean was considered common and the variance

non-common, and in the second the variance common and the mean non-common. For both, they

assumed the observations were Normally distributed. In the �rst, the likelihood-based estimate is

consistent but its asymptotic variance is not minimum (where the asymptotics �xes the number of

observations per study and allows the number of studies to go to in�nity), while in the second, the

likelihood-based estimate is not even consistent. Various approaches have been o¤ered to address

the second situation but no approach is yet fully satisfactory for the �rst (which is also known as

the Fisher-Berhans problem for common mean).

According to Barndor¤-Nielsen and Cox[9], essentially the approaches to salvage the likelihood

separate into two, one is to �nd an exact or approximate factorization of the likelihood so that one

factor contains all or most of the information about the common parameter, sometimes utilizing

conditional or marginal probability models and the second replaces the speci�cation of arbitrary

non-commonness of the non-common parameter with a common distribution for that parameter.

A common parameter then resides in the marginal (over the non-common parameters) level 2 dis-

tribution and di¢ culties presented by having to (separately) estimate the non-common parameters

disappear.

D.1 Example 1 - common mean, arbitrary variance

Quoting from Neyman and Scott

"Let � be some physical constant such as the radial velocity of a star or the velocity
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of light. Assume that s series of measurements are to be made and let yij stand for
the result of the j th measurement of the i th series (i = 1; 2; :::; s; j = 1; 2; :::; ni). We
will assume that the measurements follow the normal law with the same mean � and
an unknown standard error �i which may and probably does vary from one series of
observations to another. Thus the probability density function of yij is

f (yij ;�; �i) =
1

�i
p
2�
e�(yij��)

2=2�2i

This is exactly the case when � stands for the radial velocity of a star and the yij are
its measurements obtained from ni di¤erent spectral lines on the i th plate. ... This is
also the situation in all cases where it is desired to combine measurements of physical
quantities, made in di¤erent laboratories, by di¤erent experimenters, etc."

The log-likelihood in general is

�1
2

X
i

ni log(�
2
i )�

1

2

X
i

X
j

(yij � �)2=�2i

and the score function (di¤erentiation of above with respect to �)

U� =
X
i

X
j

(yij � �)2=�2i =
X
i

niyi: =�
2
i � �

X
i

ni=�
2
i :

As is well known with �2i replaced by b�2ib� (the maximum likelihood estimate of �2i for b� notb�2i�- see below) the expectation of U� is zero, so the estimated likelihood of �;Lp (�; yij) =

c(yij)f
�
yij ;�; b�2ib�� is consistent for �.

But if the �2i were known, �
2
i = �2i0, say, the inverse variance weighted mean

P
i yi: (�

2
i0=ni)

�1P
i(�

2
i0=ni)

�1

would be normally distributed with mean � and variance 1=
P

i(�
2
i0=ni)

�1. Now the estimated

likelihood MLE for � is

b� = P
i yi: (b�2ib�=ni)�1P
i(b�2ib�=ni)�1

where

b�2ib� =X
j

(yij � b�)2
ni

=

P
j(yij � yi: )2 + ni(yi: � b�)2

ni

has (Barndor¤-Nielsen and Cox[9]) asymptotic (for �xed ni and s!1) normal distribution with
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mean � and variance P
i ni=f(ni � 2)�2i g
(
P

i ni=�
2
i )
2

exceeding that of 1=
P

i(�
2
i0=ni)

�1 with �2i known. Additionally, di¤erent weights can result in

smaller asymptotic variances with �2i unknown but it is unclear as to the best estimator for all �
2
i .

D.2 Example 2 - common variance, arbitrary mean

This is the same set up as example 1, but now the precision of measurements does not change from

one series to another yet the quantity measured does.

f
�
yij ;�i; �

2
�
=

1

�
p
2�
e�(yij��i)

2=2�2 :

With ni = 2 for all i the log-likelihood is

�1
2
2s log(�2)�

sX
i

�
(yi1 � �i)2 + (yi2 � �i)2

2�2

�

and the score function (di¤erentiation of above with respect to �2)

Ut = �
2s

2�2
+

1

2(�2)2

sX
i

�
(yi1 � �i)2 + (yi2 � �i)2

	
:

As is well known with �i replaced by b�i� (the maximum likelihood estimate of �i for a given

�) the expectation of Ut is not zero but �s=2�2 so the pro�le likelihood of �2, Lp (�; yij) =

c(yij)f (yij ; b�i�; �), is not consistent for �2 (note that here b�i� does not in fact depend on � so
that it is also the estimated likelihood).

D.3 Example 1 recast - common mean, common distribution of variance

With assumptions that �2i are independently inverse gamma distributed as

p0(�
2) = (

1

2
d0�

20

0 )
1
2d0(�2)�

1
2d0�1e

�
� 1
2d0�

20
0 =�

2
�
=�(

1

2
d0)
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where d0 is an e¤ective degrees of freedom and the "prior" mean is �2
0

0 d0=(d0� 2). For one sample

of size r the likelihood would be

Z 1

0

1

(2��2)
1
2 r
e(�

P (yi��)
2

2�2
)p0(�

2)d�2:

The full log-likelihood is

1

2

X
i

(ri + d0) log

�
1 +

ri(yi: � �)2
(yij � yi: )2 + d0�2

0
0

�
:

Note here that there are now just two parameters � and �2
0

0 for all the observations.

D.4 Example 2 recast - common variance, common distribution of mean

With assumptions that �i are independently normally distributed with mean � and variance !.

The pairs (yi1; yi2)T are now independently bivariate normal with mean (�; �)T and covariance

matrix 264 ! + �2 !

! ! + �2

375
It follows either via the bivariate normal form or by integrating the joint density with respect to

the �i that the log-likelihood is

�1
2
s log(! +

1

2
�2)�

P
i(yi: � �)2
2! + �2

� 1
2
s log(2�2)�

P
i(yi2 � yi1)2
4�2

.

The maximum likelihood estimate of �2 is 1
2

P
i(yi2 � yi1)2=s unless

1

2

X
i

(yi2 � yi1)2=s > 2
X
i

(yi: � y: : )2=(s� 1)

then it is

(
1

2

X
i

(yi2 � yi1)2 + 2
X
i

(yi: � y: : )2)=(2s� 1):

The complication arising because the parameter space is � 2 R; �2 2 R+, so that if

1

2

X
i

(yi2 � yi1)2=s > 2
X
i

(yi: � y: : )2=(s� 1)
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then the maximum likelihood is achieved on the boundary ! = 0. Except for this complication,

the usual properties of likelihood-based procedures hold[9] and note that only the parameters !; �2

and � are involved.

E A perhaps less familiar evasion of nuisance random e¤ects

When the nuisance parameter is a "random sample" from some unspeci�ed p(��i ;�); the "likelihood

curvature adjustment evasion" is when the likelihood combination is made as if all the ��i = �

but an adjustment is then made to the log-likelihood to make allowance for the assumption of

��i � p(��i ;�) actually being correct instead of �
�
i = �. At least, in the special case where the

MLE of � under the assumption of all ��i = � is still considered relevant. This gives

log(
Q
i L(�i; y)) � log(

Q
i L(�; y))c

or more conveniently in terms of log-likelihoods

P
i l(�i; y) � c

P
i l(�; y)

where c is chosen so that the usual likelihood-based variance estimate

�
"
@2c

P
i l(�; y)

@�2

����
�=�̂

#�1

provides an asymptotically consistent estimate.

The background details that motivate this adjustment to the log-likelihood are set out here.

Assuming that y1; y2; :::; yn are i.i.d. random variables with common density function f(y; �) where

� is a real valued parameter, de�ne l(y; �) = log f(y; �) and let l
0
(y; �); l

00
(y; �) , and l

000
(y; �) be the

�rst three derivatives of l(y; �) with respect to �. The following assumptions will be made about

f(y; �):

(A1) The parameter space � is an open subset of the real-line.

(A2) The set A = fy : f(y; �) > 0g does not depend on �:

(A3) f(y; �) is three times continuously di¤erential with respect to � for all y in A.

(A4) E�[l
0
(Yi; �)] = 0 for all � and V ar�[l

0
(Yi; �)] = I(�) where 0 < I(�) <1 for all �.

(A5) E�[l
00
(Yi; �)] = �J(�) where 0 < J(�) <1 for all �.
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(A6) For each � and for � > 0; jl000(t; �)j �M(y) for j� � tj � � where E�[M(Yi)] <1.

Note that by condition (A2)

Z
A

f(y; �)dy = 1 for all � 2 �

and so
d

d�

Z
A

f(y; �)dy = 0:

If the derivative can be taken inside the integral then

0 =

Z
A

d

d�
f(y; �)dy

=

Z
A

l
0
(y; �)f(y; �)dy

= E�[l
0
(Yi; �)]:

Moreover, if
R
A
f(y; �)dy can be di¤erentiated twice inside the integral sign,

0 =

Z
A

d

d�
(l
0
(y; �)f(y; �))dy

=

Z
A

l
00
(y; �)f(y; �)dy +

Z
A

(l
0
(y; �))2f(y; �)dy

= �J(�) + I(�)

and so J(�) = I(�).

From standard results, as for instance, on page 248 of Knight[71]

p
n(b� � �)!d

Z

J(�)
� N(0; V ar�[l

0
(Yi; �)]=(E�[l

00

(Yi; �)])
2)

and since given the above assumptions V ar�[l
0
(Yi; �)] = �E�[l

00
(Yi; �)] this is simply

p
n(b� � �)!d

Z

J(�)
� N(0; 1=� E�[l

00

(Yi; �)]):

But especially when what is common is only common in distribution one will want to know what

happens for mis-speci�ed models. For mis-speci�ed models consider the functional parameter �(F )

de�ned by
R +1
�1 l

0
(y; �(F ))dF (y) = 0, does

p
n(b� � �(F ))!d N(0;

R+1
�1 [l

0
(y;�(F ))]2dF (y)

(
R+1
�1 l00 (y;�(F ))dF (y))

2 )?

140



Given b� satis�es the "estimating equation" Pn
i l

0
(yi;b�) = 0 and

a) l
0
(y; �) is a strictly decreasing (or increasing) function of � (over the open set �) for each y,

b)
R +1
�1 l

0
(y; �)dF (y) = 0 has a unique solution � = �(F ) where �(F ) 2 �,

c) I(F ) =
R +1
�1 [l

0
(y; �(F ))]2dF (y) <1

d) J(F ) = �
R +1
�1 l

00
(y; �(F ))dF (y) <1

e) jl000(y; t)j �M(y) for �(F )� � � t � �(F ) + � and some � > 0 where
R +1
�1 M(y)dF (y) <1

then b� !p �(F ) and
p
n(b� � �(F ))!d Z � N(0; I(F )=J2(F ))

This suggests
Pn

i [l
0
(yi;�̂)]

2

[�
Pn

i l
00 (yi;�̂)]2

rather than 1Pn
i [l

0 (yi;�̂)]2
or 1

�
Pn

i l
00 (yi;�̂)

as an estimate of the

variance of �̂ in mis-speci�ed models.

Now if one multiplied the log-likelihood by �
Pn

i l
00
(yi;�̂)Pn

i [l
0 (yi;�̂)]2

i.e.

la(y; �) =
�
Pn

i l
00
(yi; �̂)Pn

i [l
0(yi; �̂)]2

l(y; �)

and then calculated
Pn

i l
00

a (yi; �̂) it would equal

�
Pn

i l
00
(yi; �̂)Pn

i [l
0(yi; �̂)]2

� (
nX
i

l
00
(yi; �̂))

=
�[
Pn

i l
00
(yi; �̂)]

2Pn
i [l

0(yi; �̂)]2

so that a correction to the quadratic term has been made and the usual observed information

estimate from 1= � l
00

a (yi; �̂) would provide
Pn

i [l
0
(yi;�̂)]

2

[�
Pn

i l
00 (yi;�̂)]2

as the variance estimate. Sta¤ord[111]

suggests just this but for lp(y; �) = l(y; �; �̂�) - the pro�le log-likelihood - and establishes the asymp-

totic consistency of it for this, as well as its invariance under interest respecting transformations

(i.e. of the form f�; �g ! fg(�); h(�; �)g).

Originally in this thesis, this was considered a particularly attractive evasion of random e¤ects.

It has a long history and many variants and was suggested as the "least wrong" random e¤ects

approach for meta-analysis in O�Rourke[83]. In this evasion the MLE of the common parameter is

not a¤ected - just the estimate of its variance. Quoting from McCullagh and Nelder[79] about a

variant of this (page 126)

"the mean is una¤ected but the variance is in�ated by an unknown factor �2."
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Tjur[118] recently recast the issue as

"Can we �nd a class of statistical models that extends the original generalized linear
model by some scale parameter, in such a way that:

1. the original generalized linear model comes out as a special case when the scale
parameter is �xed and equal to 1;

2. the maximum likelihood estimates in the model for the original "link-function-linear"
parameters coincide with those of the original model (ignoring the overdispersion).

The answer to this question is no ... [nothing so far] answers the fundamental question
whether there is a way of modifying conditions (1) and (2) above in such a way that
a meaningful theory of generalized linear models with overdispersion comes out as the
unique answer."

McCullagh[78] responded to this suggestion which Tjur had based on an analogy to McCul-

lagh�s earlier work on Ordinal Logistic Regression[77], dismissing (2) above by pointing out it is

the parameter that should not change when the model is extended, and not its MLE. As was

argued earlier, random e¤ects models change the MLEs and in meta-analysis applications they

are arguably changed for the worse. In other words, it is not that the MLEs should not change

with a random e¤ects model but that they should not be made "worse."

Unfortunately, the adjustment has been found to have very poor properties when there are

unknown scale parameters and this would preclude its use more generally. As an alternative, nu-

merical integration techniques have been developed so that at least a range of random e¤ects models

can be used instead of just particularly convenient ones. There are also non-parametric approaches

to random e¤ects models but they are also problematic for most meta-analysis applications given

the usually small number of studies involved.

F Other statistical issues and techniques

F.1 Construction of con�dence and credible intervals

Some writers do suggest that likelihoods are all that are necessary as outputs from statistical

analyses and some further argue that they should be the only outputs from statistical analyses[101].

These later claims are certainly controversial and also perhaps a distraction from the perspective in

this thesis �here multiplied or combined likelihoods are simply used as a means to get con�dence

intervals for frequency based inference or to be combined with prior information to get posterior

probabilities for Bayesian inference. Both Bayesian and classical approaches need to do something
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to the likelihood to get credible regions or con�dence regions and in turn credible intervals or

con�dence intervals for a single parameter of interest. A quick discussion on how to �rst get

regions and then intervals, is given now.

Bayesian credible regions could be indirectly characterized as likelihood regions where the

probability content is determined by the integral of the posterior probabilities over the region

de�ned by the likelihood region -

Pr(� 2 [�l; �u]) /
Z �u

�l

�(�jobsi), where �l and �u are determined by relative likelihood values.

Bayes theorem only stipulates that the posterior probabilities are equal to likelihood times prior

(times an arbitrary constant so that posterior probabilities add to one)

�(�jobsi) / f(�; obsi) � �(�) = f(obsij�) � �(�);

not how particular regions are to be determined. In practice, likelihood regions are not �rst

formed and then probability content determined for them, but this is not an essential di¤erence,

as the posterior probability is in principle calculable for any chosen region. The likelihood region�s

calibration of probability content given the prior would give a credible region with boundaries that

may not be the conventional ones that a Bayesian approach would use, but it would be an allowable

one. (Care is needed though with parameters that have a common distribution - as these might or

might not be integrated out of the likelihood regions before constructing credible regions and this

might matter. This issue is addressed below.)

As for con�dence regions, most often in meta-analysis, these are simply likelihood regions for

the �right�choice of a threshold �i.e. by calibrating the likelihood region by choosing a di¤erent

threshold value so that under an �appropriate�sampling model this new region has approximately

the correct coverage while retaining the same shape.[9][30] In fact, with multiple randomized studies

in clinical research, it is almost always the case that pro�le likelihood ratio based regions have

coverage properties consistent with that suggested by the Chi-square approximation of the drop in

log-likelihood page 243 of Barndor¤-Nielsen[8] and this thesis will only attempt to get con�dence

regions (and con�dence intervals) in such cases (the purpose of the simulated modi�ed pro�le

likelihood is to identify when this is not the case).

To more fully clarify the essential di¤erence between a Bayesian and a Classical parametric
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likelihood approach though, it might be helpful to characterize the Classical approach as involving

only one combination, and the Bayesian approach as involving two combinations. In the Classical

approach the only combination is the combination of data (individual observations and studies)

and that is accomplished by likelihood multiplication. In the Bayesian approach, the combination

of observations is also accomplished exactly the same way by likelihood multiplication, but there

is a second combination that involves combining probabilities which is accomplished by Bayes

theorem.

Here the probabilities of possible values of the parameter (prior) are combined with the prob-

ability of the data, given various values the parameter (likelihood), resulting in the (posterior)

probabilities of possible values of the parameter (given the data and the prior) i.e.

�(�jobsi) / f(�; obsi) � �(�) = f(obsij�) � �(�):

Quoting Sprott[109] -

�Bayes�theorem combines prior information about � in the form of a probability distrib-
ution with the current experimental information in the form of the likelihood, to obtain
the posterior distribution containing all the information. Bayes�theorem is merely a
statement of the multiplication rules for combining probabilities.�If the true unknown
value of the parameter under which the observations actually in hand were generated,
can be thought of as being random sample from a known probability distribution,
there is nothing controversial about this �multiplication to achieve the combination of
probabilities�

�it is just arithmetic or probability calculus.

There are other ways to characterize and interpret the Bayesian approach. The characterization

proposed in this thesis puts Bayes theorem in a combining framework. Sprott for instance, has

used this characterization to call attention to the need to check that the information from two

sources that is to be combined is mutually consistent �to avoid the combining apples and oranges

danger in a naive Bayesian approach where �good�prior information may be inadvertently ruined

when combined with �bad�likelihood sample information or vice versa.

In applications, an interval for a single parameter of interest will usually be required. This

will necessitate an �extraction�from a higher dimensional region and the Bayesian and Classical

approaches di¤er in how this extraction is accomplished. The Bayesian approach usually integrates

out other parameters from the credible region to get credible intervals for individual parameters

of interest. Since a prior distribution is required to get a credible region that results in a credible
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interval when appropriately integrated �this extraction of a credible interval from a credible region

is considered to be simply the result of the combining of likelihood and prior. Note, though that

parameters that have a common distribution - i.e. random parameters - might or might not be

integrated out of the likelihood regions before constructing credible regions - according to whether

or not one accepts that this should be done[12][13]. We now outline the conditions for when this

does not matter - i.e. that the same posterior intervals result from either approach.

Recall the uniform integrated likelihood (over nuisance parameter �) is

LU (�) =

Z
L(�; �)d�

where � is the parameter of interest. More generally the integrated likelihood is

L(�) =

Z
L(�; �)�(�j�)d�

where �(�j�) is the weight function or conditional prior density of � given �, and the general

likelihood is

f(y; ��; ��j�; �), where ��; �� are unobserved parameters.

Here it is claimed to be noncontroversial to use f(yj�) =
R
f(y; ��j�)d��or more generally

noncontroversial to use

f(y; ��j�; �) =
Z
f(y; ��; ��j�; �)d��:

But the subjective Bayesian will base analysis an a full prior

�B(�; �) = �B(�)�B(�j�)

and they will seek �(�jy) / L(�)�B(�) and would accept the integrated likelihood L(�) if

�(�jy) / L(�)�B(�):

It is "easy to see" that the only L(�) which satis�es this relationship is given up to a multiplicative

constant by

LB(�) =

Z
f(yj�; �)�B(�j�)d�:
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Now as

�B(� j y) =
Z
L(�; �) � �B(�)�B(� j �)d�

and integrated likelihood is

L(�) =

Z
L(�; �)�(� j �)d�

then

�B(� j y) / L(�)�B(�)

i¤

�(� j �) = �B(� j �)

while almost always in meta-analysis �B(�j�) = 1. ( It would be unusual for anyone under the

belief that an unobserved parameter �� was randomly sampled from a known distribution - i.e.

from N(�; �2) given the value of � =
�
�; �2

�
- to specify any further information about it.)

The Classical approach on the other hand, extracts a likelihood interval from the likelihood

region and then calibrates that interval. A general approach that has been adopted in this thesis,

is to maximize out the unknown parameters using pro�le likelihood where, for each value of the

parameter of interest, the other unknown parameters are replaced by their maximum likelihood

estimates given that value of the interest parameter. In meta-analysis practice, the combined

credible intervals are often very similar numerically to the combined con�dence intervals, as for

instance, was the case in Warn, Thompson and Spiegelhalter [121].

F.2 Sensitivity analyses for possibly informative choice of reported sum-

mary

Dawid�s[33] approach is presented here for possibly informative choices of a reported summary as

distinct from the approach in this thesis which assumed the summary would always be chosen.

Using Dawid�s notation, let fSn(y)g be a �nite set of possible summaries, one of which is reported.

Recall, it has been shown that the observed summary likelihood - if that summary is always

reported is

c(Sn(y)) �
Z

y:Sn(y)=Sn(y)

f(yj�)dy where Sn(y) is the value reported.
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The alternative formulation of the likelihood-based on the distribution of the summary reported

and the fact that the summary was chosen to be reported on the basis of Sn(y) and � is

p(RnjSn(y) = Sn(y); �) � L(Sn(y)j�):

This can be rewritten as

p(RnjSn(y) = Sn(y); �) � c(Sn(y)) �
Z

y:Sn(y)=Sn(y)

f(yj�)dy:

There might be non-data in�uences of � on the choice of what is reported. Non-data in�uences

on the choice of reported summary could arise easily from data from previous trials. These would

require careful and speci�c thought - including the possibility of interaction between within and

outside trial data.

F.3 Obtaining valid envelope numerical integration bounds

In order to obtain valid bounds on an integral using the envelope rules from Evans and Swartz[45],

these rules must be applied separately within each region of concavity for f (n) where f is the desired

integrand. Accuracy of the rule is improved with increasing n; but also by simply compounding a

given rule within the regions of concavity. In this thesis only one dimensional integrals were dealt

with so only intervals of concavity needed to be dealt with. The pragmatic choice of n versus the

degree of compounding for the desired accuracy of the bounds may vary by integrand. For the

real meta-analysis examples in this thesis we found it was usually best to set n = 0 and depend on

compounding to get the desired accuracy.

Application of the rules, (i.e. the calculation of
Pn

k=0
f(k)(a)
(k+1)! (b� a)

k+1+ f(n)(b)�f(n)(a)
(b�a)

(b�a)n+2
(n+2)!

and
Pn+1

k=0
f(k)(a)
(k+1)! (b�a)

k+1) involves the �rst n+1 derivatives of the integrand and the determina-

tion of the intervals of concavity involves sign changes of the n+ 2 derivative. The validity of the

bounds from the rules involves the ruling out of simple roots of the n+ 2 derivative within any of

the intervals in which the rules are applied. Calculation of symbolical derivatives is straightforward

in the Mathematica package.

Now the integral equation that counts the number of simple roots of f (n+2) in a given interval

(a; b) is (� 1
� [


R b
a
f(n+2)(x)f(n+4)(x)�f(n+3)(x)2

f(n+2)(x)2+
2f(n+3)(x)2
dx+arctan(
f

(n+3)(b)
f(n+2)(b)

)� arctan(
f
(n+3)(a)

f(n+2)(a)
)]) and usu-
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ally needs to be evaluated by numerical integration. The intervals can recursively be sub-divided

to help enable this. Again there is no need to know any of these roots per se - just the need

to ensure no roots persist inside any interval in a given set of disjoint intervals that covers the

full interval of integration. Thus the strategy used in this thesis was to recursively partition the

interval of integration until a disjoint set of intervals resulted, all of which had no simple roots

as determined by numerical integration. Mathematica has a FixedPoint function which facilitates

the implementation of recursion until this has been achieved - i.e. no intervals were split in the

last iteration. The standard Mathematica NIntegrate function was used to carry out the numerical

integrations. For some problems, more specialized methods of integration may be more e¢ cient or

even in some cases necessary and remains future research.

The rules for splitting the intervals involved two cases - intervals with more than 1 simple

root or that were not numerically integrable (with default settings) were simply split in half, while

intervals with 1 simple root were searched for the root using the Mathematica function Root and the

interval split at the root found. This needed to be modi�ed so that when a root was found outside

the interval, that interval would simply be split in half and the process repeated. In particular,

this avoided roots that gave parameter values outside the permitted range for the underlying

probability distributions. Numerical separation of intervals needed to be assured around simple

roots when they were located and this was achieved by the use of a small constant - usually of

order 10�6. Additionally, as the 
 in the integral equation is an arbitrary small positive constant,

some checking that the chosen one is small enough is required and it needed to be changed in a

couple of examples that were undertaken.

Application of the rules to intervals with an in�nite endpoint can be challenging but were

simply dealt with by truncation in this thesis. Strictly speaking, the envelope bounds are only

truly valid for a truncated random e¤ects model. Desired accuracy of the bounds - given an

initially constructed set of disjoint intervals without any simple roots - was simply achieved by

recursively splitting each interval in half. There are obvious ways in which this could be made

adaptive, but remains future work.
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